Effects of regional ischemia on the ryanodine-sensitive Ca2+ release channel of canine cardiac sarcoplasmic reticulum. 1992

E M Darling, and F A Lai, and G Meissner
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260.

In mammalian myocardium, muscle contraction is regulated by the rapid release of Ca2+ ions through ryanodine-sensitive Ca2+ release channels present in the intracellular membrane compartment, sarcoplasmic reticulum (SR). In this study, the effects of regional ischemia on intrinsic SR Ca2+ release channel function were determined by studying the Ca2+ transport and release, and [3H]ryanodine binding properties of whole muscle homogenates and SR-enriched membrane fractions from normal and ischemic myocardium. Measurement of oxalate-supported 45Ca(2+)-uptake rates before and after pretreatment with 1 mM ryanodine, indicated that the SR Ca2+ release channel retained its ability to be effectively closed by the channel-specific probe ryanodine after 15 and 60 min of ischemia. 45Ca2+ efflux from, and high-affinity [3H]ryanodine binding to SR-enriched vesicle fractions indicated retention of regulation of Ca2+ release channel activity by Ca2+, Mg2+ and adenine nucleotide in 15 and 60 min ischemic samples. Further, sodium dodecylsulfate polyacrylamide gel and immunoblot analysis revealed no proteolytic degradation of the M(r) 565,000 SR Ca2+ release channel polypeptide after 15 and 60 min of ischemia. These results suggested a minimal, if any, loss of intrinsic SR Ca2+ release channel function in ischemic hearts.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias

Related Publications

E M Darling, and F A Lai, and G Meissner
February 2004, Biophysical journal,
E M Darling, and F A Lai, and G Meissner
May 1997, Journal of molecular and cellular cardiology,
E M Darling, and F A Lai, and G Meissner
May 1986, The Journal of biological chemistry,
E M Darling, and F A Lai, and G Meissner
October 1998, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
E M Darling, and F A Lai, and G Meissner
January 1998, Receptors & channels,
E M Darling, and F A Lai, and G Meissner
January 2000, Journal of molecular medicine (Berlin, Germany),
E M Darling, and F A Lai, and G Meissner
February 1994, Circulation research,
Copied contents to your clipboard!