Effect of ischemia on the fraction of ryanodine-sensitive cardiac sarcoplasmic reticulum. 1997

Q Y Wu, and J J Feher
Department of Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.

The effect of 15 min of global, normothermic ischemia on cardiac sarcoplasmic reticulum (SR) was investigated using the Ca2+ uptake rate and 3H-ryanodine binding of ventricular homogenates and isolated SR vesicles. Ischemia did not affect ryanodine binding in the homogenate, while it increased it in the isolated SR vesicles. Although ischemia decreased the homogenate oxalate-supported Ca2+ uptake rate, measured in the presence of high ryanodine to close the ryanodine-sensitive efflux pathway (+RY), its decrease of the Ca2+ uptake rate, measured in the absence of ryanodine (-RY), was more marked. This finding was also observed in the isolated SR. Although inhibition of the Ca-ATPase and its coupled Ca2+ uptake by thapsigargin proportionately decreased SR Ca2+ uptake -RY and +RY, ischemia decreased the Ca2+ uptake -RY proportionately more. This result suggested that there was a greater fraction of Ca2+ uptake activity in ryanodine-sensitive vesicles after ischemia. However, ischemia also reduced the yield of SR activity in the isolated SR fraction and the results could potentially be due to differential selection of ryanodine-sensitive and ryanodine-insensitive SR in the isolation procedure. We directly tested the hypothesis that ischemia changes the fraction of Ca2+ uptake activity in the ryanodine-sensitive vesicles by estimating the Ca-oxalate capacity measured +RY and -RY. Ischemia decreased the capacity -RY much more than +RY in the homogenate, indicating that more of the SR volume and Ca2+ uptake activity was in the ryanodine-sensitive vesicles after ischemia.

UI MeSH Term Description Entries
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002129 Calcium Oxalate The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi. Calcium Oxalate (1:1),Calcium Oxalate Dihydrate,Calcium Oxalate Dihydrate (1:1),Calcium Oxalate Monohydrate,Calcium Oxalate Monohydrate (1:1),Calcium Oxalate Trihydrate,Dihydrate, Calcium Oxalate,Monohydrate, Calcium Oxalate,Oxalate, Calcium,Trihydrate, Calcium Oxalate
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012433 Ryanodine A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D017202 Myocardial Ischemia A disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. The decreased blood flow may be due to narrowing of the coronary arteries (CORONARY ARTERY DISEASE), to obstruction by a thrombus (CORONARY THROMBOSIS), or less commonly, to diffuse narrowing of arterioles and other small vessels within the heart. Severe interruption of the blood supply to the myocardial tissue may result in necrosis of cardiac muscle (MYOCARDIAL INFARCTION). Heart Disease, Ischemic,Ischemia, Myocardial,Ischemic Heart Disease,Disease, Ischemic Heart,Diseases, Ischemic Heart,Heart Diseases, Ischemic,Ischemias, Myocardial,Ischemic Heart Diseases,Myocardial Ischemias
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Q Y Wu, and J J Feher
October 1992, Journal of molecular and cellular cardiology,
Q Y Wu, and J J Feher
February 1985, Biochimica et biophysica acta,
Q Y Wu, and J J Feher
September 1996, The American journal of physiology,
Q Y Wu, and J J Feher
March 1991, The Journal of pharmacology and experimental therapeutics,
Q Y Wu, and J J Feher
February 1994, Journal of molecular and cellular cardiology,
Q Y Wu, and J J Feher
June 1987, Biochimica et biophysica acta,
Q Y Wu, and J J Feher
January 1995, Toxicology and applied pharmacology,
Copied contents to your clipboard!