The Fo complex of the proton-translocating F-type ATPase of Escherichia coli. 1992

G Deckers-Hebestreit, and K Altendorf
Universität Osnabrück, Fachbereich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, FRG.

The ATP synthase (F1Fo) of Escherichia coli consists of two structurally and functionally distinct entities. The F1 part is composed of five subunits alpha, beta, gamma, delta and epsilon (3:3:1:1:1) and carries the catalytic centres of the enzyme. The membrane-bound Fo complex functions as a proton channel and consists of the three subunits a, b and c (1:2:10 +/- 1). Subunit c (8288 M(r)) exhibits a hairpin-like structure within the membrane. A conserved acidic residue (Asp-61) in the C-terminal hydrophobic segment is absolutely required for proton translocation through Fo, whereas the hydrophilic loop region is necessary for F1 binding. Expression of the chloroplast proteolipid together with subunits a and b of E. coli did not produce an active Fo hybrid complex. Therefore, the construction of hybrid c subunits consisting of parts of the proteolipid from both organisms is in progress to determine those parts of subunit c that are essential for a functional interplay with subunits a and b. Subunit a (30,276 M(r)), which is also involved in proton translocation, is an extremely hydrophobic protein with 5-8 membrane-spanning helices. Studies with alkaline phosphatase fusion proteins resulted in controversial conclusions about the localization of the N and C termini of the protein. A foreign epitope (13 amino acids) has been inserted into the N- or C-terminal region of subunit a without affecting the function of Fo. Binding studies with a monoclonal antibody against this epitope are now under investigation to determine the orientation of subunit a.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

G Deckers-Hebestreit, and K Altendorf
January 1990, Annual review of biophysics and biophysical chemistry,
G Deckers-Hebestreit, and K Altendorf
March 1974, FEBS letters,
G Deckers-Hebestreit, and K Altendorf
October 1981, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
G Deckers-Hebestreit, and K Altendorf
October 1979, Seikagaku. The Journal of Japanese Biochemical Society,
G Deckers-Hebestreit, and K Altendorf
January 1983, Methods in enzymology,
G Deckers-Hebestreit, and K Altendorf
September 1982, Journal of bacteriology,
G Deckers-Hebestreit, and K Altendorf
February 1984, Seikagaku. The Journal of Japanese Biochemical Society,
G Deckers-Hebestreit, and K Altendorf
June 1986, The Journal of biological chemistry,
G Deckers-Hebestreit, and K Altendorf
August 1983, The Journal of biological chemistry,
Copied contents to your clipboard!