The proton-translocating ATPase of Escherichia coli. 1990

A E Senior
Department of Biochemistry, University of Rochester, New York 14642.

The purpose of this review is to provide an up-to-date summary of E. coli proton-translocating F1F0ATPase. From work on this enzyme, new insights have been gained in the areas of bacterial physiology and energy metabolism, mechanism of enzyme action, mechanism of ion transport through membranes, structure of membrane proteins, mechanism of energy coupling, and regulation of complex enzyme expression and assembly. An important and pressing need is for more structural information. High-resolution structural analyses of F1F0 have not progressed far, and this is likely to present a road block unless overcome. One possibility is to crystallize or apply nuclear magnetic resonance spectroscopy to isolated subunits available in native form from E. coli F1F0. In this way, one might incrementally build a structure of the F1F0 complex. Static views, however, are unlikely to provide a complete picture of a dynamic enzyme such as this, in which long-range interactions between F0 and F1 and cooperative interactions between nucleotide-binding sites play such an important role in catalysis. Mutagenesis and reversion analysis are two powerful techniques, which, combined with direct enzymological measurements, can be exploited in the immediate future to study the intriguing dynamic aspects of F1F0 function. Many questions remain to challenge us. Regulation of enzyme activity in the cell is not understood. The role of the noncatalytic nucleotide sites is unknown. The assembly pathway and regulation of expression are not established. The mechanisms of H+ translocation and catalysis seem to be proving amenable to analysis, and further advances in these areas can be expected. Long-range conformational interaction between the H+ conduction machinery in F0 and the catalytic sites in F1 seems basic to energy coupling; a major future goal is to provide a realistic physical explanation to validate this concept.

UI MeSH Term Description Entries
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical

Related Publications

A E Senior
March 1974, FEBS letters,
A E Senior
October 1981, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
A E Senior
October 1979, Seikagaku. The Journal of Japanese Biochemical Society,
A E Senior
February 1984, Seikagaku. The Journal of Japanese Biochemical Society,
A E Senior
November 1992, The Journal of experimental biology,
A E Senior
August 1983, The Journal of biological chemistry,
A E Senior
September 1985, The Journal of biological chemistry,
Copied contents to your clipboard!