Substrate synergism and the steady-state kinetic reaction mechanism for EPSP synthase from Escherichia coli. 1992

K J Gruys, and M C Walker, and J A Sikorski
New Products Division, Monsanto Agricultural Company, St. Louis, Missouri 63167.

Previous studies of Escherichia coli 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) have suggested that the kinetic reaction mechanism for this enzyme in the forward direction is equilibrium ordered with shikimate 3-phosphate (S3P) binding first followed by phosphoenolpyruvate (PEP). Recent results from this laboratory, however, measuring direct binding of PEP and PEP analogues to free EPSPS suggest more random character to the enzyme. Steady-state kinetic and spectroscopic studies presented here indicate that E. coli EPSPS does indeed follow a random kinetic mechanism. Initial velocity studies with S3P and PEP show competitive substrate inhibition by PEP added to a normal intersecting pattern. Substrate inhibition is proposed to occur by competitive binding of PEP at the S3P site [Ki(PEP) = 6-8 mM]. To test for a productive EPSPS.PEP binary complex, the reaction order of EPSPS was evaluated with shikimic acid and PEP as substrates. The mechanism for this reaction is equilibrium ordered with PEP binding first giving a Kia value for PEP in agreement with the independently measured Kd of 0.39 mM (shikimate Km = 25 mM). Results from this study also show that the 3-phosphate moiety of S3P offers 8.7 kcal/mol in binding energy versus a hydroxyl in this position. Over 60% of this binding energy is expressed in binding of substrate to enzyme rather than toward increasing kcat. Glyphosate inhibition of shikimate turnover was poor with approximately 8 x 10(4) loss in binding capacity compared to the normal reaction, consistent with the independently measured Kd of 12 mM for the EPSPS.glyphosate binary complex. The EPSPS.glyphosate complex induces shikimate binding, however, by a factor of 7 greater than EPSPS.PEP. Carboxyallenyl phosphate and (Z)-3-fluoro-PEP were found to be strong inhibitors of the enzyme that have surprising affinity for the S3P binding domain in addition to the PEP site as measured both kinetically and by direct observation with 31P NMR. The collective data indicate that the true kinetic mechanism for EPSPS in the forward direction is random with synergistic binding occurring between substrates and inhibitors. The synergism explains how the mechanism can be random with S3P and PEP, but yet equilibrium ordered with PEP binding first for shikimate turnover. Synergism also accounts for how glyphosate can be a strong inhibitor of the normal reaction, but poor versus shikimate turnover.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000097797 Glyphosate Active compound in herbicidal formulations that inhibits 3-PHOSPHOSHIKIMATE 1-CARBOXYVINYLTRANSFERASE. Gliphosate,Glyphosate Hydrochloride (2:1),Glyphosate, Calcium Salt,Glyphosate, Calcium Salt (1:1),Glyphosate, Copper (2+) Salt,Glyphosate, Dilithium Salt,Glyphosate, Disodium Salt,Glyphosate, Magnesium Salt,Glyphosate, Magnesium Salt (2:1),Glyphosate, Monoammonium Salt,Glyphosate, Monopotassium Salt,Glyphosate, Monosodium Salt,Glyphosate, Sodium Salt,Glyphosate, Zinc Salt,Yerbimat,Kalach 360 SL,N-(phosphonomethyl)glycine,Roundup
D012765 Shikimic Acid A tri-hydroxy cyclohexene carboxylic acid metabolite of the shikimate pathway. It is important in the biosynthesis of aromatic amino acids, flavonoids and alkaloids in plants and microorganisms. 1-Cyclohexene-1-carboxylic acid, 3,4,5-trihydroxy-, (3R-(3alpha,4alpha,5beta))-,Shikimates,Shikimic Acid Derivatives,Acid, Shikimic
D014166 Transferases Transferases are enzymes transferring a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme "donor:acceptor group transferase". (Enzyme Nomenclature, 1992) EC 2. Transferase
D051229 3-Phosphoshikimate 1-Carboxyvinyltransferase An enzyme of the shikimate pathway of AROMATIC AMINO ACID biosynthesis, it generates 5-enolpyruvylshikimate 3-phosphate and ORTHOPHOSPHATE from PHOSPHOENOLPYRUVATE and shikimate-3-phosphate. The shikimate pathway is present in BACTERIA and PLANTS but not in MAMMALS. 3-Enol-Pyruvoylshikimate-5-Phosphate Synthase,3-Enolpyruvylshikimate 5-Phosphate Synthase,5-Enol-Pyruvyl Shikimate-3-Phosphate Synthase,5-Enolpyruvyl Shikimic Acid 3-Phosphate Synthetase,5-Enolpyruvylshikimate-3-Phosphate Synthase,5-Enolpyruvylshikimic Acid-3-Phosphate Synthase,EPSP Synthase,aroA 3-Phosphoshikimate 1-Carboxyvinyltransferase,1-Carboxyvinyltransferase, 3-Phosphoshikimate,1-Carboxyvinyltransferase, aroA 3-Phosphoshikimate,3 Enol Pyruvoylshikimate 5 Phosphate Synthase,3 Enolpyruvylshikimate 5 Phosphate Synthase,3 Phosphoshikimate 1 Carboxyvinyltransferase,3-Phosphoshikimate 1-Carboxyvinyltransferase, aroA,5 Enol Pyruvyl Shikimate 3 Phosphate Synthase,5 Enolpyruvyl Shikimic Acid 3 Phosphate Synthetase,5 Enolpyruvylshikimate 3 Phosphate Synthase,5 Enolpyruvylshikimic Acid 3 Phosphate Synthase,5-Phosphate Synthase, 3-Enolpyruvylshikimate,Acid-3-Phosphate Synthase, 5-Enolpyruvylshikimic,Shikimate-3-Phosphate Synthase, 5-Enol-Pyruvyl,Synthase, 3-Enol-Pyruvoylshikimate-5-Phosphate,Synthase, 3-Enolpyruvylshikimate 5-Phosphate,Synthase, 5-Enol-Pyruvyl Shikimate-3-Phosphate,Synthase, 5-Enolpyruvylshikimate-3-Phosphate,Synthase, 5-Enolpyruvylshikimic Acid-3-Phosphate,Synthase, EPSP,aroA 3 Phosphoshikimate 1 Carboxyvinyltransferase
D019883 Alkyl and Aryl Transferases A somewhat heterogeneous class of enzymes that catalyze the transfer of alkyl or related groups (excluding methyl groups). EC 2.5. Alkyltransferase,Alkyltransferases,Aryltransferase,Aryltransferases

Related Publications

K J Gruys, and M C Walker, and J A Sikorski
January 2002, Biochemistry,
K J Gruys, and M C Walker, and J A Sikorski
August 1993, Archives of biochemistry and biophysics,
K J Gruys, and M C Walker, and J A Sikorski
May 1977, Archives of biochemistry and biophysics,
K J Gruys, and M C Walker, and J A Sikorski
March 1970, European journal of biochemistry,
K J Gruys, and M C Walker, and J A Sikorski
May 2003, Archives of biochemistry and biophysics,
K J Gruys, and M C Walker, and J A Sikorski
April 1995, Biochemistry,
Copied contents to your clipboard!