Reversible activation of soluble guanylate cyclase by oxidizing agents. 1992

X B Wu, and B Brüne, and F von Appen, and V Ullrich
University of Konstanz, Faculty of Biology, Federal Republic of Germany.

Soluble guanylate cyclase of human platelets was stimulated by thiol oxidizing compounds like diamide and the reactive disulfide 4, 4'-dithiodipyridine. Activation followed a bell-shaped curve, revealing somewhat different optimum concentrations for each compound, although in both cases, higher concentrations were inhibitory. Diamide at a concentration of 100 microM transiently activated the enzyme. In the presence of moderate concentrations of diamide and 4,4'-dithiodipyridine, causing a two- to fourfold activation by themselves, the stimulatory activity of NO-releasing compounds like sodium nitroprusside was potentiated. In contrast, higher concentrations of thiol oxidizing compounds inhibited the NO-stimulated activation of soluble guanylate cyclase. Activation of guanylate cyclase was accompanied by a reduction in reduced glutathione and a concomitant formation of protein-bound glutathione (protein-SSG). Both compounds showed an activating potency as long as reduced glutathione remained, leading to inhibition of the enzyme just when all reduced glutathione was oxidized. Activation was reversible while reduced glutathione recovered and protein-SSG disappeared. We propose that diamide or reactive disulfides and other thiol oxidizing compounds inducing thiol-disulfide exchange activate soluble guanylate cyclase. In this respect partial oxidation is associated with enzyme activation, whereas massive oxidation results in loss of enzymatic activity. Physiologically, partial disulfide formation may amplify the signal toward NO as the endogenous activator of soluble guanylate cyclase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D003958 Diamide A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells. Diazodicarboxylic Acid Bis(N,N-dimethyl)amide,Diazodicarboxylic Acid Bisdimethylamide,Dizene Dicarboxylic Acid Bis(N,N-dimethylamide),Dizenedicarboxylic Acid Bis(N,N-dimethylamide),Tetramethylazoformamide,Acid Bisdimethylamide, Diazodicarboxylic,Bisdimethylamide, Diazodicarboxylic Acid
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

X B Wu, and B Brüne, and F von Appen, and V Ullrich
May 1981, Biochemical and biophysical research communications,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
July 2018, Nitric oxide : biology and chemistry,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
December 2006, Current opinion in structural biology,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
November 1981, Biochemical and biophysical research communications,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
November 1992, Arzneimittel-Forschung,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
January 2007, Biomeditsinskaia khimiia,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
September 2021, Nature communications,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
December 1980, Biochemical and biophysical research communications,
X B Wu, and B Brüne, and F von Appen, and V Ullrich
September 2000, Biochemistry,
Copied contents to your clipboard!