Physiological activation and deactivation of soluble guanylate cyclase. 2018

Benjamin G Horst, and Michael A Marletta
Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.

Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.

UI MeSH Term Description Entries
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071756 Soluble Guanylyl Cyclase A mammalian enzyme composed of a heterodimer of alpha and beta subunits. Each subunit consists of four domains; N-terminal HNOX domain, PAS-like domain, a coiled-coil domain, and a C-terminal catalytic domain. All four domains are homologous proteins with a similar conformation of functional domains. Soluble guanylate cyclase catalyzes the formation of cyclic GMP from GTP, and is a key enzyme of the nitric oxide signaling pathway involved in the regulation of a variety of biological and physiological processes in mammals. Nitric Oxide Receptor,Nitric Oxide Receptors,Nitric Oxide-Sensitive Guanylyl Cyclase,Receptor, Nitric Oxide,Soluble Guanylate Cyclase,Soluble Guanylyl Cyclase, alpha Subunit,Soluble Guanylyl Cyclase, beta Subunit,Cyclase, Soluble Guanylate,Cyclase, Soluble Guanylyl,Guanylate Cyclase, Soluble,Guanylyl Cyclase, Soluble,Nitric Oxide Sensitive Guanylyl Cyclase,Oxide Receptor, Nitric,Oxide Receptors, Nitric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Benjamin G Horst, and Michael A Marletta
December 2006, Current opinion in structural biology,
Benjamin G Horst, and Michael A Marletta
December 2005, Biochemistry,
Benjamin G Horst, and Michael A Marletta
May 1982, Proceedings of the National Academy of Sciences of the United States of America,
Benjamin G Horst, and Michael A Marletta
April 1992, Archives of biochemistry and biophysics,
Benjamin G Horst, and Michael A Marletta
July 1998, American journal of obstetrics and gynecology,
Benjamin G Horst, and Michael A Marletta
January 2009, Handbook of experimental pharmacology,
Benjamin G Horst, and Michael A Marletta
May 2021, International journal of molecular sciences,
Benjamin G Horst, and Michael A Marletta
July 2006, FEBS letters,
Benjamin G Horst, and Michael A Marletta
May 2021, Interactive cardiovascular and thoracic surgery,
Copied contents to your clipboard!