Extracellular adenosine 5'-triphosphate-evoked glutamate release in cultured hippocampal neurons. 1992

K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
Division of Pharmacology, National Institute of Hygienic Sciences, Tokyo, Japan.

Characteristics of extracellular ATP-evoked electrical responses in rat hippocampal neurons were investigated. Extracellular ATP (100 microM) induced a rapid depolarization followed by repetitive firings of spikes in these cells under whole-cell current-clamp. In whole-cell voltage-clamp experiments, ATP activated 2 types of inward currents that were inhibited by P2-purinoceptor blocker suramin (300 microM). One is a small (about -20 pA) sustained current which is insensitive to tetrodotoxin (TTX), and the other is a large (-100 to -300 pA) transient current which abolished in the presence of 3 microM TTX. The ATP-induced transient current was blocked by 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 30 microM), a non-N-methyl-D-aspartate (non-NMDA) receptor antagonist. ATP failed to induce the transient current in the cell which showed the desensitization to quisqualic acid (QA; 10 microM), a non-NMDA receptor agonist. These findings suggest that ATP directly activates small sustained currents, and indirectly induces the transient currents by evoking glutamate release.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011810 Quinoxalines Quinoxaline
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
July 1995, Journal of neurochemistry,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
May 2021, Biochemical pharmacology,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
December 1987, Neuroscience,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
January 2014, Veterinary immunology and immunopathology,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
September 1989, Neurochemical research,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
November 2001, Journal of neurochemistry,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
October 2016, Chest,
K Inoue, and K Nakazawa, and K Fujimori, and T Watano, and A Takanaka
January 2007, Hippocampus,
Copied contents to your clipboard!