Adenosine 5'-triphosphate synthesis and metabolism localized in neurites of cultured sympathetic neurons. 1987

A M Tolkovsky, and H S Suidan
Department of Biochemistry, Cambridge University, U.K.

Adenosine triphosphate synthesis and metabolism in cultured sympathetic neurons was studied after the incorporation of [2-3H]adenine into intact or microdissected neurites to determine whether ATP is provided locally during neurite outgrowth, when and where it is synthesized and how its levels are regulated at rest and following depolarization. Neurites maintained an independent capability for synthesis of ATP at any stage of growth: [3H]ATP levels increased in neurites in direct proportion to neurite length and equivalent amounts of [3H]ATP were synthesized by intact neurites, by neurites separated from cell bodies or by neurites further segmented into sections. Thus, metabolic labelling of cultured neurons with [3H]adenine provides a simple method to measure relative neurite outgrowth. Neurite ATP was maintained mainly by respiration but also by glycolysis and [3H]ATP levels were stable for at least 14 h after adenine withdrawal when cells were at rest. Depolarization overcame respiratory control, causing a quantitative conversion of ATP to adenosine monophosphate (AMP) and inosine monophosphate (IMP) and the release of nucleosides (adenosine and inosine) and nucleotides [adenosine diphosphate (ADP) and adenosine monophosphate (AMP)]. Release of nucleosides, but not of nucleotides or [3H]noradrenaline, was enhanced by NaN3 or 2-deoxyglucose under nondepolarizing conditions and was prevented by the adenosine transport inhibitor p-nitrobenzyl-6-thioinosine. It is concluded that neurites can use local mechanisms for ATP synthesis that do not depend on a functional connection to the cell body. Any metabolic stress which causes ATP breakdown causes these cells to express a transient purinergic phenotype involving release of adenosine and inosine by facilitated diffusion. To promote the release of purine nucleotides, however, more specific stimuli are required.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

A M Tolkovsky, and H S Suidan
January 1992, Neuroscience letters,
A M Tolkovsky, and H S Suidan
May 1975, The Journal of organic chemistry,
A M Tolkovsky, and H S Suidan
January 1997, The Journal of biological chemistry,
A M Tolkovsky, and H S Suidan
October 2001, Journal of biochemistry,
A M Tolkovsky, and H S Suidan
June 1992, Neuroscience,
A M Tolkovsky, and H S Suidan
December 1973, Biochimica et biophysica acta,
A M Tolkovsky, and H S Suidan
January 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A M Tolkovsky, and H S Suidan
August 1969, The Journal of biological chemistry,
Copied contents to your clipboard!