Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. 1992

M Takahashi, and S Kawamoto, and R S Adelstein
Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

The complete amino acid sequence of a vertebrate nonmuscle myosin heavy chain-B isoform (MHC-B, 1976 amino acids, 229 kDa) has been deduced by using cDNA clones from chicken brain libraries. The chicken nonmuscle MHC-B shows overall similarity in primary structure to other MHCs in the areas contributing to the ATP-binding site and actin-binding site. Similar to other nonsarcomeric MHC IIs, there is a short uncoiled tail sequence at the carboxyl terminus of the molecule. It is in the uncoiled tail sequence that the greatest number of differences in amino acids sequence between MHC-A and B were found, which allowed generation of isoform-specific antibodies. These antibodies were used to determine the relative content of MHC-A and MHC-B in various tissues. During the cloning of the cDNA encoding chicken brain MHC-B, we found a 63-nucleotide insertion encoding 21 amino acids located in the head region of the MHC near to the actin-binding site and a 30 nucleotide insertion encoding 10 amino acids near to the ATP-binding site. Analysis using S-1 nuclease showed that both inserts are expressed in a tissue-dependent manner; mRNA containing the inserts is present in tissues of the nervous system, but is absent from other non-muscle cells, which contain the noninserted isoform of MHC-B. Similar inserts were found in corresponding positions in human cerebellar mRNA. Antibodies raised against a peptide synthesized based on the 21 amino acid insert found in chickens recognize a MHC isoform in the same tissues that are enriched for the mRNA. These insertions appear to be a mechanism for generating additional MHC-B isoforms specific to the nervous system.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

M Takahashi, and S Kawamoto, and R S Adelstein
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
M Takahashi, and S Kawamoto, and R S Adelstein
August 1995, Journal of muscle research and cell motility,
M Takahashi, and S Kawamoto, and R S Adelstein
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Takahashi, and S Kawamoto, and R S Adelstein
June 1995, The Journal of biological chemistry,
M Takahashi, and S Kawamoto, and R S Adelstein
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
M Takahashi, and S Kawamoto, and R S Adelstein
May 1999, Biochemical and biophysical research communications,
M Takahashi, and S Kawamoto, and R S Adelstein
February 1996, Journal of muscle research and cell motility,
M Takahashi, and S Kawamoto, and R S Adelstein
October 2000, Biochemical and biophysical research communications,
M Takahashi, and S Kawamoto, and R S Adelstein
May 1993, The American journal of physiology,
M Takahashi, and S Kawamoto, and R S Adelstein
May 1994, The Journal of biological chemistry,
Copied contents to your clipboard!