Cloning of the cDNA encoding a myosin heavy chain B isoform of Xenopus nonmuscle myosin with an insert in the head region. 1993

N Bhatia-Dey, and R S Adelstein, and I B Dawid
Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.

The complete amino acid sequence of Xenopus laevis nonmuscle myosin heavy chain B (MHC-B) has been deduced from overlapping cDNA clones isolated from an XTC cell library. RNA blots of various developmental stages, adult tissues, and XTC cells detect a single transcript of 7.5 kb which is expressed at similar levels throughout development. MHC-B mRNA was detected in XTC cells, heart, lung, spleen, and brain, at lower levels in ovary, testis, pancreas, stomach, liver, and eye, but not in kidney and skeletal muscle. Protein expression in adult tissues, as detected by immunoblot analysis, correlates well with mRNA expression. In chickens and humans, a fraction of the mRNA encoding the MHC-B isoform was found previously to contain a 10-amino acid insert at amino acid 211 near the ATP-binding site. As reported elsewhere, in the chicken this insert-bearing isoform is nervous system-specific. The Xenopus sequence shows a 16-amino acid insertion at the same position; 7 of 16 residues are identical to those in the chicken and human insertion, and these identical residues include a consensus target sequence for cyclin-p34cdc2 kinase. In contrast to chicken, all frog tissues and embryonic stages tested contained the insert-bearing form, and no evidence for a non-insert-bearing MHC-B isoform was found in Xenopus.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

N Bhatia-Dey, and R S Adelstein, and I B Dawid
August 1995, Journal of muscle research and cell motility,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
May 1993, The American journal of physiology,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
January 1995, The Journal of biological chemistry,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
October 2000, Biochemical and biophysical research communications,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
November 2005, American journal of physiology. Cell physiology,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
February 1996, Journal of muscle research and cell motility,
N Bhatia-Dey, and R S Adelstein, and I B Dawid
January 1998, Nephron,
Copied contents to your clipboard!