Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. 1976

M Berger, and S A Hagg, and M N Goodman, and N B Ruderman

1. The regulation of glucose uptake and disposition in skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin and exercise, induced by sciatic-nerve stimulation, enhanced glucose uptake about tenfold in fed and starved rats, but were without effect in rats with diabetic ketoacidosis. 3. At rest, the oxidation of lactate (0.44 mumol/min per 30 g muscle in fed rats) was decreased by 75% in both starved and diabetic rats, whereas the release of alanine and lactate (0.41 and 1.35 mumol/min per 30 g respectively in the fed state) was increased. Glycolysis, defined as the sum of lactate+alanine release and lactate oxidation, was not decreased in either starvation or diabetes. 4. In all groups, exercise tripled O2 consumption (from approximately 8 to approximately 25 mumol/min per 30 g of muscle) and increased the release and oxidation of lactate five- to ten-fold. The differences in lactate release between fed, starved and diabetic rats observed at rest were no longer apparent; however, lactate oxidation was still several times greater in the fed group. 5. Perfusion of the hindquarter of a fed rat with palmitate, octanoate or acetoacetate did not alter glucose uptake or lactate release in either resting or exercising muslce; however, lactate oxidation was significantly inhibited by acetoacetate, which also increased the intracellular concentration of acetyl-CoA. 6. The data suggest that neither that neither glycolysis nor the capacity for glucose transport are inhbitied in the perfused hindquarter during starvation or perfusion with fatty acids or ketone bodies. On the other hand, lactate oxidation is inhibited, suggesting diminished activity of pyruvate dehydrogenase. 7. Differences in the regulation of glucose metabolism in heart and skeletal muscle and the role of the glucose/fatty acid cycle in each tissue are discussed.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010168 Palmitates Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid. Hexadecanoates,Palmitate
D002210 Caprylates Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure. Caprylate,Octanoates,Caprylic Acids,Octanoic Acids,Acids, Caprylic,Acids, Octanoic
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
August 1976, The Biochemical journal,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
November 1974, Diabetes,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
August 1994, Biochemical medicine and metabolic biology,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
March 1993, The American journal of physiology,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
January 2007, Journal of cellular physiology,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
January 1992, Diabetic medicine : a journal of the British Diabetic Association,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
December 1991, Mechanisms of ageing and development,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
July 2004, Diabetologia,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
January 1977, Arzneimittel-Forschung,
M Berger, and S A Hagg, and M N Goodman, and N B Ruderman
December 1984, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!