Gln-41 is intermolecularly cross-linked to Lys-113 in F-actin by N-(4-azidobenzoyl)-putrescine. 1992

G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314.

The bifunctional reagent N-(4-azidobenzoyl)-putrescine was synthesized and covalently bound to rabbit skeletal muscle actin. The incorporation was mediated by guinea pig liver transglutaminase under conditions similar to those described by Takashi (1988, Biochemistry 27, 938-943); up to 0.5 M/M were incorporated into G-actin, whereas F-actin was refractory to incorporation. Peptide fractionation showed that at least 90% of the label was bound to Gln-41. The labeled G-actin was polymerized, and irradiation of the F-actin led to covalent intermolecular cross-linking. A cross-linked peptide complex was isolated from a tryptic digest of the cross-linked actin in which digestion was limited to arginine; sequence analysis as well as mass spectrometry indicated that the linked peptides contained residues 40-62 and residues 96-116, and that the actual cross-link was between Gln-41 and Lys-113. Thus the gamma-carboxyl group of Gln-41 must be within 10.7 A of the side chain (probably the amino group) of Lys-113 in an adjacent actin monomer. In the atomic model for F-actin proposed by Holmes et al. (1990, Nature 347, 44-49), the alpha-carbons of these residues in adjacent monomers along the two-start helices are sufficiently close to permit cross-linking of their side chains, and, pending atomic resolution of the side chains, the results presented here seem to support the proposed model.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
December 1998, Biochemistry,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
December 1998, Biochemistry,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
November 1984, Proceedings of the National Academy of Sciences of the United States of America,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
March 1996, Biophysical journal,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
December 1998, Biochemistry,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
November 1995, Biophysical journal,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
January 2002, Journal of molecular biology,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
July 2010, Physical review. E, Statistical, nonlinear, and soft matter physics,
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
October 1989, Journal of immunology (Baltimore, Md. : 1950),
G Hegyi, and H Michel, and J Shabanowitz, and D F Hunt, and N Chatterjie, and G Healy-Louie, and M Elzinga
October 1994, Journal of muscle research and cell motility,
Copied contents to your clipboard!