Simple method for the determination of rosiglitazone in human plasma using a commercially available internal standard. 2003

Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
Bioanalysis, Drug Metabolism and Pharmacokinetics, Discovery Research, Dr Reddys Laboratories Ltd, Miyapur, Hyderabad 500-050, India.

To the best of our knowledge, bioanalytical methods to determine rosiglitazone in human plasma reported in literature use internal standards that are not commercially available. Our purpose was to develop a simple method for the determination of rosiglitazone in plasma employing a commercially available internal standard (IS). After the addition of celecoxib (IS), plasma (0.25 mL) samples were extracted into ethyl acetate. The residue after evaporation of the organic layer was dissolved in 750 microL of mobile phase and 50 microL was injected on to HPLC. The separation was achieved using a Hichrom KR 100, 250 x 4.6 mm C(18) with a mobile phase composition potassium dihydrogen phosphate buffer (0.01 m, pH 6.5):acetonitrile:methanol (40:50:10, v/v/v). The flow-rate of the mobile phase was set at 1 mL/min. The column eluate was monitored by fluorescence detector set at an excitation wavelength of 247 nm and emission wavelength of 367 nm. Linear relationships (r(2) > 0.99) were observed between the peak area ratio rosiglitazone to IS vs rosiglitazone concentrations across the concentration range 5-1000 ng/mL. The intra-run precision (%RSD) and accuracy (%Dev) in the measurement of rosiglitazone were <+/-10.69 and <-12.35%, respectively across the QC levels (50-1000 ng/mL). The extraction efficiency was >80% for both rosiglitazone and IS from human plasma. The lower limit of quantitation of the assay was 5 ng/mL. In summary, the methodology for rosiglitazone measurement in plasma was simple, sensitive and employed a commercially available IS.

UI MeSH Term Description Entries
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D012015 Reference Standards A basis of value established for the measure of quantity, weight, extent or quality, e.g. weight standards, standard solutions, methods, techniques, and procedures used in diagnosis and therapy. Standard Preparations,Standards, Reference,Preparations, Standard,Standardization,Standards,Preparation, Standard,Reference Standard,Standard Preparation,Standard, Reference
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077154 Rosiglitazone A thiazolidinedione that functions as a selective agonist for PPAR GAMMA. It improves INSULIN SENSITIVITY in adipose tissue, skeletal muscle, and the liver of patients with TYPE 2 DIABETES MELLITUS. 5-((4-(2-Methyl-2-(pyridinylamino)ethoxy)phenyl)methyl)-2,4-thiazolidinedione-2-butenedioate,Avandia,BRL 49653,BRL-49653,BRL49653,Rosiglitazone Maleate
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D045162 Thiazolidinediones THIAZOLES with two keto oxygens. Members are insulin-sensitizing agents which overcome INSULIN RESISTANCE by activation of the peroxisome proliferator activated receptor gamma (PPAR-gamma). Glitazones

Related Publications

Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
April 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
June 1975, Klinische Wochenschrift,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
May 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
February 2008, Therapeutic drug monitoring,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
June 2005, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
April 1987, International journal of andrology,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
April 1984, Medical laboratory sciences,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
June 2010, Biomedical chromatography : BMC,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
January 2018, Journal of molecular microbiology and biotechnology,
Rao N V S Mamidi, and Biju Benjamin, and Mullangi Ramesh, and Nuggehally R Srinivas
April 1998, Journal of food protection,
Copied contents to your clipboard!