A simple method for the comparison of commercially available ATP hygiene-monitoring systems. 1998

K O Colquhoun, and S Timms, and C R Fricker
Thames Water Utilities Ltd, Spencer House Laboratory, Reading, Berkshire, UK. 100673.3534@compuserve.com

The purpose of this study was to evaluate a methodology which could easily be used in any test laboratory in a uniform and consistent way for determining the sensitivity and reproducibility of results obtained with three ATP hygiene-monitoring systems. The test protocol discussed here allows such comparison to be made, thereby establishing a method of benchmarking both new systems and developments of existing systems. The sensitivity of the LUMINOMETER K, PocketSwab (Charm Sciences) was found to be between 0.4 and 4.0 nmol of ATP with poor reproducibility at the 40.0 nmol level (CV, 35%). The sensitivity of the IDEXX LIGHTING system and the Biotrace UNILITE Xcel were both between 0.04 and 0.4 nmol with coefficients of variation (CVs) of between 9% at 0.04 nmol and 10% at 0.4 nmol for the IDEXX system and 17% at 0.04 nmol and 21% at 0.4 nmol for the Biotrace system. The three systems were tested with a range of dilutions of different food residues: orange juice, raw milk, and ground beef slurry. All three test systems allowed detection of orange juice and raw milk at dilutions of 1:1,000, although the CV of results from the Charm system (54 and 74% respectively) was poor at this dilution for both residues. The sensitivity of the test systems was poorer for ground beef slurry than it was for orange juice and raw milk. Both the Biotrace and IDEXX systems were able to detect a 1:100 dilution of beef slurry (with CVs of 17 and 10% respectively), whilst at this dilution results from the Charm system had a CV of 55%. It was possible by using the method described in this paper to rank in order of sensitivity and reproducibility the three single-shot ATP hygiene-monitoring systems investigated, with the IDEXX LIGHTNING being the best, followed by the Biotrace UNILITE Xcel, and then the charm LUMINOMETER K, PocketSwab.

UI MeSH Term Description Entries
D005516 Food Microbiology The presence of bacteria, viruses, and fungi in food and food products. This term is not restricted to pathogenic organisms: the presence of various non-pathogenic bacteria and fungi in cheeses and wines, for example, is included in this concept. Microbiology, Food
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012499 Sanitation The development and establishment of environmental conditions favorable to the health of the public.
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

K O Colquhoun, and S Timms, and C R Fricker
January 1992, Nuclear medicine communications,
K O Colquhoun, and S Timms, and C R Fricker
September 1983, Journal of clinical microbiology,
K O Colquhoun, and S Timms, and C R Fricker
September 2003, Biomedical chromatography : BMC,
K O Colquhoun, and S Timms, and C R Fricker
January 2018, Journal of molecular microbiology and biotechnology,
K O Colquhoun, and S Timms, and C R Fricker
March 1993, British journal of biomedical science,
K O Colquhoun, and S Timms, and C R Fricker
October 2006, International journal of surgical pathology,
K O Colquhoun, and S Timms, and C R Fricker
January 1978, Medical instrumentation,
Copied contents to your clipboard!