A conditional yeast mutant deficient in mRNA transport from nucleus to cytoplasm. 1992

T Kadowaki, and Y Zhao, and A M Tartakoff
Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106.

Transport of mRNA from nucleus to cytoplasm is critical for eukaryotic gene expression; however, the mechanism of export is unknown. Selection and screening procedures have therefore been used to obtain a family of temperature-sensitive conditional mutants of Saccharomyces cerevisiae that accumulate poly(A)+ RNA in the nucleus when incubated at 37 degrees C, as judged by in situ hybridization. In one such mRNA transport mutant, mtr1-1, RNA synthesis continues, the export of poly(A)+ RNA is inhibited, intranuclear poly(A)+ is remarkably stable, and protein synthesis gradually stops. Thus, there is no tight coupling between RNA synthesis and export. The export lesion is reversible. Although mRNA export is clearly not a default option, neither inhibition of protein synthesis, inhibition of mRNA splicing, nor inhibition of poly(A)-binding protein function blocks export of the average poly(A)+, as judged by in situ hybridization. Further analysis of the family of mtr mutants should help map the path of RNA transport.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases

Related Publications

T Kadowaki, and Y Zhao, and A M Tartakoff
January 1987, Progress in nucleic acid research and molecular biology,
T Kadowaki, and Y Zhao, and A M Tartakoff
September 1999, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
T Kadowaki, and Y Zhao, and A M Tartakoff
January 1993, Zeitschrift fur Gerontologie,
T Kadowaki, and Y Zhao, and A M Tartakoff
December 1978, Journal of bacteriology,
T Kadowaki, and Y Zhao, and A M Tartakoff
October 1966, The Journal of cell biology,
T Kadowaki, and Y Zhao, and A M Tartakoff
December 1993, Current opinion in cell biology,
T Kadowaki, and Y Zhao, and A M Tartakoff
October 1966, The Journal of biological chemistry,
T Kadowaki, and Y Zhao, and A M Tartakoff
December 2000, Journal of hepatology,
T Kadowaki, and Y Zhao, and A M Tartakoff
June 2006, Current opinion in cell biology,
Copied contents to your clipboard!