Detection of micronuclei in peripheral blood of mitomycin C-treated mice using supravital staining with acridine orange. 1992

M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan.

The induction of micronuclei in peripheral blood from mitomycin C (MMC)-treated mice was examined using a supravital acridine orange staining method. Male ICR mice were intraperitoneally given MMC at a single dose of 0.25, 0.5, 1, or 2 mg/kg. Blood was sampled from the tail 24, 48, 72, and 96 h after treatment, and the frequency of micronucleated reticulocytes (MNRETs) was examined. The induction of MNRETs peaked at 48 h after treatment with MMC; there was a clear, dose-related increase in MNRETs. In a multiple-treatment study, mice were treated with 4 consecutive daily injections of MMC at a dose of 0.13, 0.25, 0.5, or 1 mg/kg. The frequency of MNRETs increased markedly 24 h after the second treatment as compared with the first treatment, and did not change significantly until 24 h after the fourth treatment. The frequency of MNRETs decreased to approximately control values 96 h after the last treatment. In addition, a slight but statistically significant increase in the number of micronucleated normochromatic erythrocytes in peripheral blood was detected by means of Giemsa staining 7 days after the last treatment. These results confirm the usefulness of the supravital acridine orange staining method to evaluate micronucleus induction in mouse peripheral blood.

UI MeSH Term Description Entries
D008297 Male Males
D008813 Mice, Inbred ICR An inbred strain of mouse that is used as a general purpose research strain, for therapeutic drug testing, and for the genetic analysis of CARCINOGEN-induced COLON CANCER. Mice, Inbred ICRC,Mice, ICR,Mouse, ICR,Mouse, Inbred ICR,Mouse, Inbred ICRC,ICR Mice,ICR Mice, Inbred,ICR Mouse,ICR Mouse, Inbred,ICRC Mice, Inbred,ICRC Mouse, Inbred,Inbred ICR Mice,Inbred ICR Mouse,Inbred ICRC Mice,Inbred ICRC Mouse
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration
D000165 Acridine Orange A cationic cytochemical stain specific for cell nuclei, especially DNA. It is used as a supravital stain and in fluorescence cytochemistry. It may cause mutations in microorganisms. Tetramethyl Acridine Diamine,3,6-Bis(dimethylamino)acridine,Acridine Orange Base,Basic Orange 3RN,C.I. 46005,C.I. Basic Orange 14,Euchrysine,N,N,N',N'-Tetramethyl-3,6-Acridinediamine Hydrochloride,Rhoduline Orange,Acridine Diamine, Tetramethyl,Base, Acridine Orange,Diamine, Tetramethyl Acridine,Orange 3RN, Basic,Orange Base, Acridine,Orange, Acridine,Orange, Rhoduline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015162 Micronucleus Tests Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION. Micronucleus Assays,Assay, Micronucleus,Assays, Micronucleus,Micronucleus Assay,Micronucleus Test,Test, Micronucleus,Tests, Micronucleus
D016685 Mitomycin An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis. Mitomycin C,Ametycine,Mitocin-C,Mitomycin-C,Mutamycin,NSC-26980,Mitocin C,MitocinC,NSC 26980,NSC26980

Related Publications

M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
January 1992, Mutation research,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
January 1992, Mutation research,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
January 1992, Mutation research,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
February 1977, Experientia,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
May 1961, Blood,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
June 1966, Zeitschrift fur Rheumaforschung,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
January 1992, Mutation research,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
July 1986, Current eye research,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
January 1994, Methods in cell biology,
M Hara, and S Nakagawa, and E Fujioka, and E Ayukawa, and T Izushi
December 1958, The Journal of parasitology,
Copied contents to your clipboard!