High-affinity IgE receptor-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells induces early and late protein-tyrosine phosphorylations. 1992

M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
Laboratory of Immunology, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892.

We reported previously that stimulation of RBL-2H3 cells through the high-affinity IgE receptor resulted in tyrosine phosphorylation of a 72-kDa protein (pp72) that was coupled to signal transduction. In the present study, although pp72 tyrosine phosphorylation was induced only by antigen triggering, stimulation of RBL-2H3 cells by either antigen or the calcium-ionophore A23187 led to increased tyrosine phosphorylation of a 110-kDa protein (pp110). This tyrosine phosphorylated protein was also observed when RBL-2H3 cells were transfected with the G protein-coupled m3 muscarinic receptor and then stimulated to secrete with carbachol. In contrast to tyrosine phosphorylation of pp72, antigen-induced pp110 tyrosine phosphorylation required extracellular calcium, was absent in cells depleted of protein kinase C, and was detected between 1 and 5 min after stimulation. The protein-tyrosine kinase inhibitor genistein blocked both histamine release and tyrosine phosphorylation induced by A23187. Altogether, the data suggest a role for pp110 in secretion. However, protein kinase C activation induced pp110 tyrosine phosphorylation but not histamine release demonstrating that pp110 tyrosine phosphorylation alone is not sufficient for degranulation. We conclude that tyrosine phosphorylation of pp72 is associated with the early steps of IgE receptor-generated signaling, whereas pp110 tyrosine phosphorylation occurs secondary to calcium influx and protein kinase C activation.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs

Related Publications

M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
July 2006, Journal of immunology (Baltimore, Md. : 1950),
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
January 2010, Microbiology and immunology,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
March 1993, Biochemical and biophysical research communications,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
February 1998, Pulmonary pharmacology & therapeutics,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
November 1992, Molecular immunology,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
March 2004, Journal of pharmacological sciences,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
November 2015, Toxicological sciences : an official journal of the Society of Toxicology,
M Benhamou, and V Stephan, and K C Robbins, and R P Siraganian
September 1995, The Journal of biological chemistry,
Copied contents to your clipboard!