Effect of bryostatin 1 on the in vitro radioprotective capacity of recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) toward committed human myeloid progenitor cells (CFU-GM). 1992

S Grant, and G R Pettit, and C McCrady
Division of Hematology, Medical College of Virginia, Richmond 23298.

We have examined the effect of the macrocyclic lactone protein kinase C (PK-C) activator bryostatin 1 on the in vitro radioprotective capacity of recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) toward normal committed myeloid progenitor cells (day-14 granulocyte-macrophage colony-forming units [CFU-GM]). Preincubation of T-cell- and adherent cell-depleted bone marrow mononuclear cells with 12.5 nM bryostatin 1 and either 1.25 or 50 ng/ml rGM-CSF for 24 h resulted in an 18%-30% survival at 4-5 Gy, whereas cells exposed to rGM-CSF alone gave rise to no detectable colonies at radiation doses greater than 2.5 Gy. Coadministration of bryostatin 1 also led to a threefold increase in Do values for both rGM-CSF concentrations. A similar enhancement of radioprotective effects was observed with the tumor-promoting phorbol ester phorbol dibutyrate. Exposure of cells to both bryostatin 1 and rGM-CSF immediately following irradiation also resulted in enhanced progenitor cell survival when compared to rGM-CSF alone, but radioprotective effects were less than those observed when cells were preincubated with these factors. Cells preconditioned with bryostatin 1 and rGM-CSF prior to exposure to 2 or 4 Gy gave rise to significantly more colonies when radiation was administered as a 4-h divided dose, suggesting that bryostatin 1 may act by potentiating rGM-CSF-induced repair of sublethal radiation damage. Finally, pre-exposure of enriched progenitor cells (CD34+) to bryostatin 1 and rGM-CSF resulted in radioprotective effects that were less than those observed for partially purified populations with respect to the total population of surviving myeloid colonies. However, CD34+ cells preincubated with bryostatin 1 and rGM-CSF prior to irradiation exhibited a significant increase in both the percentage and absolute number of neutrophilic and macrophage colonies, and a reduction in eosinophilic colonies, compared to cells exposed to rGM-CSF alone. These studies suggest that bryostatin 1 (and possibly other PK-C activators) potentiates the in vitro radioprotective effects of rGM-CSF and may also regulate the lineage specificity of this response.

UI MeSH Term Description Entries
D007783 Lactones Cyclic esters of hydroxy carboxylic acids, containing a 1-oxacycloalkan-2-one structure. Large cyclic lactones of over a dozen atoms are MACROLIDES. Lactone
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011837 Radiation-Protective Agents Drugs used to protect against ionizing radiation. They are usually of interest for use in radiation therapy but have been considered for other purposes, e.g. military. Radiation Protectant,Radiation Protective Agent,Radiation-Protective Agent,Radiation-Protective Drug,Radioprotective Agent,Radioprotective Agents,Radioprotective Drug,Agents, Radiation-Protective,Radiation Protectants,Radiation Protective Agents,Radiation-Protective Drugs,Radiation-Protective Effect,Radiation-Protective Effects,Radioprotective Drugs,Agent, Radiation Protective,Agent, Radiation-Protective,Agent, Radioprotective,Agents, Radiation Protective,Agents, Radioprotective,Drug, Radiation-Protective,Drug, Radioprotective,Drugs, Radiation-Protective,Drugs, Radioprotective,Effect, Radiation-Protective,Effects, Radiation-Protective,Protectant, Radiation,Protectants, Radiation,Protective Agent, Radiation,Protective Agents, Radiation,Radiation Protective Drug,Radiation Protective Drugs,Radiation Protective Effect,Radiation Protective Effects
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

S Grant, and G R Pettit, and C McCrady
March 1995, Nihon rinsho. Japanese journal of clinical medicine,
S Grant, and G R Pettit, and C McCrady
November 1999, Nihon rinsho. Japanese journal of clinical medicine,
S Grant, and G R Pettit, and C McCrady
September 1996, Medical oncology (Northwood, London, England),
Copied contents to your clipboard!