Formation of salivary-mucosal pellicle: the role of transglutaminase. 1992

S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
Department of Periodontology, College of Dentistry, Ohio State University, Columbus 43210.

The present investigation was carried out to identify salivary components of mucosal pellicles in vivo and explore further the mechanism of interaction between salivary molecules and buccal epithelial cells. By using specific antisera and immunoprotein blotting, high-(MG1) and low-(MG2) molecular-mass salivary mucins, amylase, salivary cystatins and proline-rich proteins were detected within mucosal pellicle in vivo. In addition, the data indicated that the mucins and proline-rich proteins could be cleaved into lower-molecular-mass products, whereas the proline-rich proteins could also be cross-linked into higher-molecular-mass complexes. The role of buccal epithelial cell transglutaminase in these interactions was further studied by utilizing purified iodinated amylase, neutral cystatin SN and acidic proline-rich proteins 1 and 3 (APRP1 and 3). After incubation with buccal epithelial cells in vitro 125I-labelled APRPs appeared to undergo a greater degree of cross-linking than 125I-labelled cystatin SN, as determined by SDS/PAGE/autoradiography. Amylase did not appear to be cross-linked at all. Recovery of 125I-labelled APRPs and 125I-labelled cystatin SN with epithelial cell envelopes after repeated extraction suggested that both molecules were cross-linked to envelope proteins, but that 125I-labelled APRPs were cross-linked to a greater degree than 125I-labelled cystatin SN. Cross-linking in buccal epithelial cell preparations was inhibited by an excess of methylamine hydrochloride, a transglutaminase substrate. In a further assessment of amylase, cystatin and APRPs as transglutaminase substrates, only APRP3 and a partially purified preparation of APRPs acted as an amine acceptor for the cross-linking of [14C]methylamine by purified transglutaminase, as determined by SDS/PAGE/fluorography. This reaction was completely inhibited by excess EDTA. The combined data from this study suggest that during mucosal pellicle formation multiple components of saliva adsorb to buccal epithelial cell surfaces, and that, within this group, selected components are enzymically cross-linked by an epithelial transglutaminase and/or proteolytically cleaved into smaller fragments.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009061 Mouth Mucosa Lining of the ORAL CAVITY, including mucosa on the GUMS; the PALATE; the LIP; the CHEEK; floor of the mouth; and other structures. The mucosa is generally a nonkeratinized stratified squamous EPITHELIUM covering muscle, bone, or glands but can show varying degree of keratinization at specific locations. Buccal Mucosa,Oral Mucosa,Mucosa, Mouth,Mucosa, Oral
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000681 Amylases A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-. Diastase,Amylase
D012463 Saliva The clear, viscous fluid secreted by the SALIVARY GLANDS and mucous glands of the mouth. It contains MUCINS, water, organic salts, and ptylin. Salivas

Related Publications

S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
August 2014, Colloids and surfaces. B, Biointerfaces,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
November 1975, Den Norske tannlaegeforenings tidende,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
October 2014, Oral diseases,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
October 2023, Clinical oral investigations,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
January 1989, Archives of oral biology,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
May 2004, Journal of nanoscience and nanotechnology,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
December 2014, Ultrastructural pathology,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
June 2014, Microscopy research and technique,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
April 2021, Colloids and surfaces. B, Biointerfaces,
S D Bradway, and E J Bergey, and F A Scannapieco, and N Ramasubbu, and S Zawacki, and M J Levine
January 2009, Journal of biomedical optics,
Copied contents to your clipboard!