Analysis of the chicken fast myosin heavy chain family. Localization of isoform-specific antibody epitopes and regions of divergence. 1992

L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
Department of Food Science and Technology, University of California, Davis 95616.

cDNAs encoding the rod region of four different fast myosin heavy chains (MYCHs) in the chicken were identified, using anti-MYCH monoclonal antibodies, in two expression libraries prepared from 19-day embryonic and adult chicken muscle. These clones were used to determine the amino acid sequences that encompass the epitopes of five anti-MYHC monoclonal antibodies. Additionally, the amino acid sequences were compared to each other and to a full length embryonic MYHC. Although there is extensive homology in the chicken fast myosin rods, sequences within the hinge, within the central portion of the light meromyosin fragment, and at the carboxy terminus exhibit the largest number of amino acid substitutions. We propose that divergence within these subdomains may contribute to isoform-specific properties associated with skeletal myosin rods.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
May 1986, The Journal of biological chemistry,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
April 1992, Acta physiologica Scandinavica,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
June 1983, The Journal of biological chemistry,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
December 1992, Muscle & nerve,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
December 1993, The Journal of experimental zoology,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
March 1995, Mechanisms of development,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
January 2000, Cells, tissues, organs,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
March 1992, European journal of biochemistry,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
October 1991, Journal of molecular evolution,
L A Moore, and M J Arrizubieta, and W E Tidyman, and L A Herman, and E Bandman
April 1997, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!