DNA-binding properties of cloned TATA-binding protein from potato tubers. 1992

M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
Molecular Genetics Department, John Innes Centre for Plant Science Research, Norwich, Norfolk, UK.

A full-length cDNA clone encoding the TATA-binding protein (TBP), the DNA-binding component of the general transcription factor TFIID was cloned from potato tubers. The DNA sequence of this cDNA indicated that the predicted potato protein was very similar to cloned TBP from other species. Genomic southern analysis showed that TBP is encoded in the potato genome as a low-copy-number sequence. The potato TBP cDNA clone was shown to encode a functional protein that interacts in a sequence-specific way with the promoter region of a class-1 potato patatin gene. Functional analysis of carboxy-terminal truncated derivatives of potato TBP showed that important components of DNA binding were located within the carboxy-terminal 54 amino acids. Kinetic and thermodynamic properties of in vitro synthesised potato TBP were investigated, and demonstrated strict salt and temperature preferences for maximum DNA binding activity. In addition on and off-rate measurements showed that both association and dissociation of TBP from DNA is slow. The specific and the non-specific equilibrium constants Ks and Kn were calculated as 5 x 10(9) M-1 and 3.65 x 10(4) M-1 respectively. These results indicate that the interaction of potato TBP with the patatin promoter is highly specific.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011198 Solanum tuberosum A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts. Potatoes,Potato,Solanum tuberosums,tuberosum, Solanum,tuberosums, Solanum
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
June 1990, Science (New York, N.Y.),
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
January 2010, Biochemistry. Biokhimiia,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
October 2004, Biochemistry. Biokhimiia,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
September 1984, European journal of biochemistry,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
September 1978, Journal of biochemistry,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
April 1974, Biochimica et biophysica acta,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
August 1994, Nature,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
February 2005, The Journal of biological chemistry,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
August 1993, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
M J Holdsworth, and C Grierson, and W Schuch, and M Bevan
October 1972, The Biochemical journal,
Copied contents to your clipboard!