Functional domains and upstream activation properties of cloned human TATA binding protein. 1990

M G Peterson, and N Tanese, and B F Pugh, and R Tjian
Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720.

The TATA binding protein, TFIID, plays a central role in the initiation of eukaryotic mRNA synthesis. Here, we present a human cDNA clone for this factor. Comparison of its predicted protein sequence with those from Drosophila and yeast reveals a highly conserved carboxyl-terminal 180 amino acids. By contrast, the amino-terminal region of TFIID has diverged in both sequence and length. A striking feature of the human protein is a stretch of 38 glutamine residues in the NH2-terminal region. Expression of human TFIID in both Escherichia coli and HeLa cells produces a protein that binds specifically to a TATA box and promotes basal transcription; the conserved COOH-terminal portion of the protein is sufficient for both of these activities. Recombinant TFIID forms a stable complex on a TATA box either alone or in combination with either of the general transcription factors, TFIIA or TFIIB. Full-length recombinant TFIID is able to support Sp1 activated transcription in a TFIID-depleted nuclear extract, while a deletion of the NH2-terminal half of the protein is not. These results indicate the importance of the NH2-terminal region for upstream activation functions and suggest that additional factors (co-activators) are required for mediating interactions with specific regulators.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell

Related Publications

M G Peterson, and N Tanese, and B F Pugh, and R Tjian
June 1992, Plant molecular biology,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
October 1995, Molecular and cellular biology,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
October 1994, Science (New York, N.Y.),
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
June 2012, The Journal of biological chemistry,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
August 1995, The Journal of biological chemistry,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
March 1994, Molecular and cellular biology,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
April 1999, Proceedings of the National Academy of Sciences of the United States of America,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
M G Peterson, and N Tanese, and B F Pugh, and R Tjian
May 1996, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!