Functional reconstitution of a chloride channel protein from bovine trachea. 1992

S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
Department of Physiology and Biophysics, University of Alabama, Birmingham 35294.

We characterized the electrophysiological properties of a chloride channel protein isolated from bovine trachea after incorporation into planar lipid bilayers, and studied the effects of thiol-modulating agents on channel regulation both in bilayers and vesicular iodide uptake studies. Our experiments showed that this protein formed perfectly anion-selective channels in the bilayer, with an anion permeability sequence of I- (2.1) > NO3- (1.7) > Br- (1.2) > Cl- (1.0). The conductance of this channel was 25-30 picosiemens in 150 mM Cl-, and saturated with increasing chloride concentration. This channel could be completely inhibited by 4,4'-bis(isothiocyano)-2,2'-stilbenedisulfonate. Immunoblot analysis, using polyclonal antibodies (anti-p38), revealed one major band at 140 kDa. Upon reduction with dithiothreitol, 64- and 38-kDa polypeptides were observed. Functional experiments showed that reduction was accompanied by loss of 125I- uptake and single-channel activity. In the presence of dithiothreitol, only the low molecular mass protein forms (64 and 38 kDa) were detected by anti-p38 antibodies on Western blots. Cross-linking of S-S bonds with Cu(2+)-o-phenanthroline led to activation of chloride channels in vesicles and bilayers. Over-aggregation of chloride channels by this S-S cross-linking reagent caused inhibition of 125I- uptake by 80-100% and the abolishment of single-channel activity. We propose that the native chloride channel from bovine trachea can exist in vivo in different structural and functional forms depending upon its thiol-disulfide oxidation reduction status. The oxidized form has a molecular mass of 140 kDa and represents a fully active chloride channel. Inactivation of this channel might occur by over-aggregation of protein subunits, or by dissociation of the 140-kDa subunit by disulfide bond reduction.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical

Related Publications

S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
January 1988, Comparative biochemistry and physiology. A, Comparative physiology,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
March 1991, The Journal of biological chemistry,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
December 1995, The Journal of biological chemistry,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
November 2013, Proceedings of the National Academy of Sciences of the United States of America,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
December 1991, The Journal of membrane biology,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
June 1989, Science (New York, N.Y.),
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
November 1996, The American journal of physiology,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
March 2002, American journal of physiology. Cell physiology,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
June 1982, Proceedings of the National Academy of Sciences of the United States of America,
S Ran, and C M Fuller, and M P Arrate, and R Latorre, and D J Benos
February 1992, The Journal of biological chemistry,
Copied contents to your clipboard!