Pathogenesis of myelin breakdown in demyelinating diseases: role of proteolytic enzymes. 1992

N L Banik
Department of Neurology, Medical University of South Carolina, Charleston 29425.

The mechanism by which the myelin sheath is degraded in demyelinating diseases is unknown. The demonstration of increased activities of both acid (cathepsins B, D, A) and neutral proteinases in tissue from experimental allergic encephalomyelitis (EAE) in animals and multiple sclerosis (MS, plaques) and the disappearance of myelin proteins implicate a role for proteolytic enzyme in myelin breakdown. The degradation of myelin basic protein (MBP) by proteinase yields encephalitogenic peptides and its loss has been found to cause structural alteration of the myelin sheath. This suggests that MBP degradation is an initial step in the breakdown of myelin in demyelinating diseases. A calcium-activated neutral proteinase (calpain), which degrades MBP, was found to increase in activity in MS tissue and cerebrospinal fluid (CSF), and its presence in myelin suggests that myelin may be autodigested in demyelinating disease. The source of increased proteinase activity has been indicated as macrophages, lymphocytes, and proliferative astrocytes (reactive cells). Increased proteinase activity is found in Schwann cells in Wallerian degeneration, and the presence of calpain in myelin-forming oligodendrocytes and Schwann cells suggests that these cells are likely sources of degradative enzymes. The involvement of proteolytic enzymes in the mechanism of myelin breakdown indicates the possible intervention with proteinase inhibitors for beneficial effect.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003711 Demyelinating Diseases Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system. Clinically Isolated CNS Demyelinating Syndrome,Clinically Isolated Syndrome, CNS Demyelinating,Demyelinating Disorders,Demyelination,Demyelinating Disease,Demyelinating Disorder,Demyelinations
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N L Banik
January 1969, Neuropatologia polska,
N L Banik
January 1985, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
N L Banik
January 1973, Annals of clinical and laboratory science,
N L Banik
September 1970, Nihon rinsho. Japanese journal of clinical medicine,
N L Banik
January 1984, Advances in experimental medicine and biology,
N L Banik
January 1987, Critical reviews in clinical laboratory sciences,
N L Banik
January 1997, Postepy higieny i medycyny doswiadczalnej,
Copied contents to your clipboard!