Abnormal neuroendocrine responses during exercise in heart transplant recipients. 1992

R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
Center for Exercise Science, College of Medicine, University of Florida, Gainesville 32610.

BACKGROUND Osmotic and neural factors stimulate neuroendocrine activity during exercise. In contrast to excitatory mechanisms, afferent information from cardiac mechanoreceptors inhibits integrative centers in the hypothalamus and medula oblongata, which serves to buffer neuroendocrine activity. Orthotopic cardiac transplantation results in the loss of afferent information from cardiac mechanoreceptors. Thus, transplantation possibly results in exaggerated neuroendocrine responses when patients are physically active. RESULTS We measured the neuroendocrine response to moderate and strenuous exercise performed at the same relative intensity in 11 heart transplant recipients (50 +/- 14 years old) 18 +/- 12 months after transplantation and 11 control subjects matched with respect to sex, age, and body size. Plasma levels of norepinephrine, vasopressin, renin activity, atrial natriuretic peptide, angiotensin II, and aldosterone were measured at rest, during a maximal graded exercise test, and during submaximal exercise at 40% and 70% of peak power output on a cycle ergometer (W). Plasma renin activity and atrial natriuretic peptide were elevated at rest in heart transplant recipients (p < or = 0.05). Heart rate (%HRmax reserve), rating of perceived exertion, and reductions in plasma volume (% delta from rest) at the conclusion of the three exercise conditions did not differ between heart transplant recipients and control (p > or = 0.05). Relative changes in neuroendocrine hormones were similar (p > or = 0.05) in heart transplant recipients and control during exercise at 40% of peak power output. Relative changes in plasma norepinephrine, vasopressin, atrial natriuretic peptide, and plasma renin activity were greater (p < or = 0.05) in heart transplant recipients during exercise at 70% of peak power output and the graded exercise test. CONCLUSIONS We interpret these data as a possible indication of ablation of cardiac mechanoreceptor afferents and unopposed neuroendocrine stimulation in heart transplant recipients. Furthermore, chronic neuroendocrine hyperactivity is likely in ambulatory heart transplant recipients. Although cyclosporine nephrotoxicity is implicated in the development of hypertension, our data suggest that chronic neuroendocrine hyperactivity, which alters renal volume regulation, also contributes to the incidence and severity of hypertension in heart transplant recipients.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009490 Neurosecretory Systems A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ. Neuroendocrine System,Neuroendocrine Systems,Neurosecretory System,System, Neuroendocrine,System, Neurosecretory,Systems, Neuroendocrine,Systems, Neurosecretory
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D012084 Renin-Angiotensin System A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM. Renin-Angiotensin-Aldosterone System,Renin Angiotensin Aldosterone System,Renin Angiotensin System,System, Renin-Angiotensin,System, Renin-Angiotensin-Aldosterone
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests

Related Publications

R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
May 1998, The American journal of cardiology,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
May 2019, Medicine and science in sports and exercise,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
July 1992, Journal of applied physiology (Bethesda, Md. : 1985),
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
January 1999, Cardiology,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
April 2016, The Canadian journal of cardiology,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
November 2001, International journal of cardiology,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
February 2009, American journal of physiology. Heart and circulatory physiology,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
July 2011, American journal of physical medicine & rehabilitation,
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
December 1991, Journal of applied physiology (Bethesda, Md. : 1985),
R W Braith, and C E Wood, and M C Limacher, and M L Pollock, and D T Lowenthal, and M I Phillips, and E D Staples
May 2009, The Journal of physiology,
Copied contents to your clipboard!