Cardiac output responses during exercise in volume-expanded heart transplant recipients. 1998

R W Braith, and M B Plunkett, and R M Mills
Department of Exercise and Sport Sciences, University of Florida, Gainesville 32611, USA.

The mechanisms responsible for immediate adjustments in cardiac output at onset of exercise, in the absence of neural drive, are not well defined in heart transplant (HT) recipients. Seven male HT recipients (mean +/- SD 57 +/- 6 years) and 7 age-matched sedentary normal control subjects (mean age 57 +/- 5 years) performed constant load cycle exercise at 40% of peak power output (Watts). Cardiac output and plasma norepinephrine were determined at rest and every 30 seconds during the first 5 minutes of exercise and at minutes 6, 8, and 10. All subjects were admitted to the General Clinical Research Center for determination of plasma volume. After 3 days of equilibration to a controlled and standardized diet, plasma volume was measured using a modified Evans Blue Dye (T-1824) dilution technique. Heart rate at rest was higher in the HT group (105 +/- 12 vs 74 +/- 6 beats/min), but during submaximum exercise, heart rates in the control group increased more rapidly (p < or = 0.05) and to a greater magnitude (54 +/- 7% vs 17 +/- 4% above rest). Stroke volume at rest was lower in HT recipients (45 +/- 4 vs 68 +/- 9 ml) but was significantly augmented immediately after onset of exercise (30 seconds) and the relative increase was greater than controls at peak exercise (61% vs 38% greater than baseline). Cardiac output at rest was within the normal range in both groups (4.58 +/- 0.27 vs 4.94 +/- 0.40 L/min). Relative increases in cardiac output were similar (p > or = 0.05) for the HT (106 +/- 12%) and control groups (97 +/- 10%). Plasma norepinephrine did not become significantly greater than resting values until approximately 4 minutes after onset of exercise in both groups. Blood volume, normalized for body weight, was 12% greater in the HT group. Thus, HT recipients with expanded blood volume (12%) augment stroke volume immediately after the onset of exercise. Plasma norepinephrine levels contribute negligibly to the rapid adjustment in cardiac output. Rather, we speculate that abrupt on-transit increases in stroke volume are due to augmented venous return, secondary to expanded blood volume.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise

Related Publications

R W Braith, and M B Plunkett, and R M Mills
January 1994, Zeitschrift fur Kardiologie,
R W Braith, and M B Plunkett, and R M Mills
November 1992, Circulation,
R W Braith, and M B Plunkett, and R M Mills
July 1990, Transplant international : official journal of the European Society for Organ Transplantation,
R W Braith, and M B Plunkett, and R M Mills
April 2017, The Cochrane database of systematic reviews,
R W Braith, and M B Plunkett, and R M Mills
May 2019, Medicine and science in sports and exercise,
R W Braith, and M B Plunkett, and R M Mills
January 2011, Journal of cardiothoracic surgery,
R W Braith, and M B Plunkett, and R M Mills
August 1992, The Journal of pediatrics,
R W Braith, and M B Plunkett, and R M Mills
July 1992, Journal of applied physiology (Bethesda, Md. : 1985),
R W Braith, and M B Plunkett, and R M Mills
November 2010, Journal of cardiothoracic surgery,
Copied contents to your clipboard!