Detection of transforming growth factor-alpha messenger RNA and protein in human corneal epithelial cells. 1992

P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
Department of Obstetrics and Gynecology, University of Florida, Gainesville 32610-00294.

Human corneal epithelial cells are normally shed from the apical surface and replaced primarily by mitosis of basal cells. Growth factors may regulate this process, but the sources for the growth factors have not been fully established. One potential source for growth factors is tear fluid, and epidermal growth factor (EGF) has been detected in the lacrimal gland and in tears. However, the hydrophilic structure and size of growth factors such as EGF may limit penetration to basal layers of intact epithelium. It is possible that turnover of basal human corneal epithelial cells might be regulated by growth factors acting by an autocrine mechanism. To determine if human corneal epithelial cells synthesize a potential autocrine growth factor, the authors analyzed human corneal epithelial cells for transforming growth factor-alpha (TGF-alpha) messenger RNA and protein, a growth factor that is structurally related to EGF and binds to the EGF receptor. Radioimmunoassay of human corneal epithelial cell cultures detected substantial levels of immunoreactive TGF-alpha (3 ng/10(6) cells). Immunohistochemical staining of human corneas also revealed the presence of immunoreactive TGF-alpha in the corneal epithelium. Northern hybridization with a 32P-labeled complementary DNA probe for TGF-alpha generated a single intense band at 4.4 kilobases, indicating the presence of TGF-alpha messenger RNA in cultured human corneal epithelial cells. These results support the hypothesis that normal turnover of corneal epithelium is controlled by the autocrine production of growth factors, such as TGF-alpha. Growth factors present in tears may function primarily as exocrine factors to stimulate healing of epithelial injuries after the epithelial barrier has been damaged.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings
D016211 Transforming Growth Factor alpha An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR. Epidermal Growth Factor-Related Transforming Growth Factor,TGF-alpha,TGFalpha,Epidermal Growth Factor Related Transforming Growth Factor

Related Publications

P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
September 1991, Investigative ophthalmology & visual science,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
August 1996, Human pathology,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
June 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
May 1995, Nihon Sanka Fujinka Gakkai zasshi,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
July 1990, Molecular endocrinology (Baltimore, Md.),
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
June 1989, Cancer research,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
August 1996, Hepatology (Baltimore, Md.),
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
April 1989, Molecular endocrinology (Baltimore, Md.),
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
January 1996, Investigative ophthalmology & visual science,
P T Khaw, and G S Schultz, and S L MacKay, and N Chegini, and D S Rotatori, and J L Adams, and R W Shimizu
May 1993, Cornea,
Copied contents to your clipboard!