Epidermal growth factor and its receptor, basic fibroblast growth factor, transforming growth factor beta-1, and interleukin-1 alpha messenger RNA production in human corneal endothelial cells. 1991

S E Wilson, and S A Lloyd
Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas 75235-9057.

The authors tried to determine whether human corneal endothelial cells in primary culture synthesize messenger RNA (mRNA) coding for epidermal growth factor (EGF), EGF receptor, basic fibroblast growth factor (FGFb), transforming growth factor beta-1 (TGFb1), and interleukin-1 alpha (IL-1 alpha). Oligodeoxythymidine-primed complementary DNA (cDNA) was generated from total cellular RNA extracted from eight independent primary corneal endothelial cell cultures. Four of these cultures, maintained 18-51 days, had obvious increases in cell numbers and mass over the 2 weeks before RNA extraction and were populated primarily with cells that were small, uniform, and mononuclear (proliferative cultures). The morphology of the cells in other four cultures, maintained 47-78 days, was predominantly large, irregular, vacuolated, and occasionally multinucleated. These cells were identical to senescent cells found in previous studies, and the cell number did not increase in these cultures over the 2 weeks preceding RNA extraction (senescent cultures). The polymerase chain reaction (PCR) was used to amplify the growth factors (EGF, FGFb, TGFb1, and IL-1 alpha), EGF receptor, and beta actin sequences from each of the cDNA samples. The EGF receptor, FGFb, and beta actin mRNAs were present in all eight cDNA samples. The EGF mRNAs were detected by PCR alone in four of the samples from proliferative cultures, TGFb1 mRNAs in three, and IL-1 alpha mRNAs in three. In the samples from senescent cultures, 0, 1, and 0 mRNAs were detected, respectively. Southern blots of the PCR products were probed with oligonucleotides complementary to sequences in each of the amplified products. This technique showed that the appropriately sized amplification products were specific.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004728 Endothelium, Corneal Single layer of large flattened cells covering the surface of the cornea. Anterior Chamber Epithelium,Corneal Endothelium,Endothelium, Anterior Chamber,Epithelium, Anterior Chamber,Anterior Chamber Endothelium
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

S E Wilson, and S A Lloyd
January 1988, Growth factors (Chur, Switzerland),
S E Wilson, and S A Lloyd
November 1992, Investigative ophthalmology & visual science,
Copied contents to your clipboard!