Effect of fatigue on rate of isometric force development in mouse fast- and slow-twitch muscles. 1992

C J Barclay
Department of Physiology, University of Auckland, New Zealand.

Changes in the rate of isometric force development with fatigue were measured in vitro (25 degrees C) using mouse soleus and extensor digitorum longus (EDL) muscles. Muscles were fatigued using 30 tetanic contractions. Rate of force development was determined from the rate constant of an exponential curve fitted to the rising force phase of a tetanus. For both muscles, when the intertetanus interval was 3 s, maximum isometric force and relaxation rate were significantly reduced in the final tetanus relative to the values in the first tetanus. Rate of force development in soleus muscles transiently increased and then decreased a small amount. The final rate was 92.7 +/- 3.3% (n = 4) of the initial rate. In contrast, the rate of force development in EDL muscles increased to 133.7 +/- 3.3% (n = 4) of the initial rate. This increased rate was evident from the second tetanus of the series, was fully established after 5 tetani, and the magnitude of the increase in rate was inversely proportional to intertetanus interval and was independent of presumed energy expenditure. The enhanced rate decayed with a time constant of 14.3 +/- 2.0 s and was independent of presumed energy expenditure. Most of these observations can be explained by the effects of P(i) on cross bridge kinetics. Other possible mechanisms, involving more rapid activation, are also suggested.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
Copied contents to your clipboard!