Topographic comparison of neuromuscular junctions in mouse slow and fast twitch muscles. 1984

M A Fahim, and J A Holley, and N Robbins

The neuromuscular junctions of mammalian slow and fast twitch muscles are activated differently in vivo and show corresponding physiological differences in vitro, but the structural basis or consequences of these differences are relatively unexplored. Therefore, neuromuscular junctions of mouse fast (extensor digitorum longus) and slow (soleus) twitch muscles were compared by use of new scanning and light microscopy techniques. In both muscles, the endplate appeared as an elliptical area raised to a variable extent above the surrounding sarcolemma and containing the primary clefts. In most soleus endplates, this raised surface area was considerably higher and wider and about three times larger than in extensor digitorum longus. In addition, the primary cleft area was about two-fold greater in soleus than in extensor digitorum longus, even though cleft length was the same. The primary clefts formed either an elliptical shape along the outer margin of the endplate with inward-directed branches or a group of relatively rectilinear dendritic branches orthogonally oriented to one another. The latter type was most frequent in soleus and the elliptical type in extensor digitorum longus. Corresponding patterns of nerve terminal arborizations were seen by light microscopy. Although nerve terminal areas were the same in fast and slow muscles, in the former, numerous diverticulae significantly increased the length of the nerve terminal outline. The possible physiological significance of the different synaptic structure of slow and fast muscle is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D006824 Hybridization, Genetic The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid. Crossbreeding,Hybridization, Intraspecies,Crossbreedings,Genetic Hybridization,Genetic Hybridizations,Hybridizations, Genetic,Hybridizations, Intraspecies,Intraspecies Hybridization,Intraspecies Hybridizations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M A Fahim, and J A Holley, and N Robbins
December 1987, The Anatomical record,
M A Fahim, and J A Holley, and N Robbins
December 1993, The Journal of physiology,
M A Fahim, and J A Holley, and N Robbins
December 1976, Pflugers Archiv : European journal of physiology,
M A Fahim, and J A Holley, and N Robbins
June 1988, International journal of sports medicine,
M A Fahim, and J A Holley, and N Robbins
January 1968, Journal of the neurological sciences,
M A Fahim, and J A Holley, and N Robbins
January 1982, The Journal of general physiology,
M A Fahim, and J A Holley, and N Robbins
February 1982, Federation proceedings,
M A Fahim, and J A Holley, and N Robbins
August 1994, The Journal of experimental biology,
M A Fahim, and J A Holley, and N Robbins
August 1994, Anatomy and embryology,
M A Fahim, and J A Holley, and N Robbins
June 1991, The Journal of membrane biology,
Copied contents to your clipboard!