Latent membrane protein 1 of Epstein-Barr virus stimulates processing of NF-kappa B2 p100 to p52. 2003

Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, NW7 1AA, United Kingdom.

Recent studies have identified a limited number of cellular receptors that can stimulate an alternative NF-kappa B activation pathway that depends upon the inducible processing of NF-kappa B2 p100 to p52. Here it is shown that the latent membrane protein (LMP)-1 of Epstein-Barr virus can trigger this signaling pathway in both B cells and epithelial cells. LMP1-induced p100 processing, which is mediated by the proteasome and is dependent upon de novo protein synthesis, results in the nuclear translocation of p52.RelB dimers. Previous studies have established that LMP1 also stimulates the canonical NF-kappa B-signaling pathway that triggers phosphorylation and degradation of I kappa B alpha. Interestingly, LMP1 activation of these two NF-kappa B pathways is shown here to require distinct regions of the LMP1 C-terminal cytoplasmic tail. Thus, C-terminal-activating region 1 is required for maximal triggering of p100 processing but is largely dispensable for stimulation of I kappa B alpha phosphorylation. In contrast, C-terminal-activating region 2 is critical for maximal LMP1 triggering of I kappa B alpha phosphorylation and up-regulation of p100 levels but does not contribute to activation of p100 processing. Because p100 deletion mutants that constitutively produce p52 oncogenically transform fibroblasts in vitro, it is likely that stimulation of p100 processing by LMP1 will play an important role in its transforming function.

UI MeSH Term Description Entries
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D052002 NF-kappa B p50 Subunit A component of NF-kappa B transcription factor. It is proteolytically processed from NF-kappa B p105 precursor protein and is capable of forming dimeric complexes with itself or with TRANSCRIPTION FACTOR RELA. It regulates expression of GENES involved in immune and inflammatory responses. NF-kappa B p105 Precursor Protein,NF-kappa B p50,NF-kappaB 50-kDa,NFKB1 Transcription Factor,NF kappa B p105 Precursor Protein,NF kappa B p50,NF kappa B p50 Subunit,NF kappaB 50 kDa,Transcription Factor, NFKB1,p50, NF-kappa B

Related Publications

Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
May 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
October 2017, Journal of virology,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
June 2013, Viruses,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
January 2012, PloS one,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
October 2000, Journal of virology,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
November 1999, Oncogene,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
December 2003, Proceedings of the National Academy of Sciences of the United States of America,
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
July 2003, Journal of immunology (Baltimore, Md. : 1950),
Peter G P Atkinson, and Helen J Coope, and Martin Rowe, and Steven C Ley
January 2003, Journal of biomedical science,
Copied contents to your clipboard!