The adenine nucleotide translocator: a new potential chemotherapeutic target. 2003

Anne-Sophie Belzacq, and Catherine Brenner
Centre National de la Recherche Scientifique, UMR 6022, Université de Technologie de Compiègne, 60205 Compiègne, France.

Identification of new targets is of utmost importance for the development of efficient apoptosis-modulating drugs. This has become possible from the unraveling of the basic apoptosis mechanisms and notably, from the demonstration of the mitochondrial membrane permeabilization as a central rate-limiting step of numerous models of cell death. Indeed, molecular and pharmacological studies revealed that the adenine nucleotide translocator (ANT) could be a therapeutic target. First, ANT is a bi-functional protein. It mediates the exchange of cytosolic ADP and mitochondrial ATP, and contributes to apoptosis via its capacity to become a lethal pore. Second, both ANT functions are under the control of the (anti)-oncogenes from the Bax/Bcl-2 family, and third, agents as diverse as proteins, lipids, ions, pro-oxidants or chemotherapeutic agents directly modulate the pore-forming activity of ANT. Here, we will review the mode of apoptosis induction by various classes of chemotherapeutic agents, which all influence directly ANT pro-apoptotic function. Hopefully, this will yield several clues to the modulation of apoptosis from a therapeutic perspective.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000226 Mitochondrial ADP, ATP Translocases A class of nucleotide translocases found abundantly in mitochondria that function as integral components of the inner mitochondrial membrane. They facilitate the exchange of ADP and ATP between the cytosol and the mitochondria, thereby linking the subcellular compartments of ATP production to those of ATP utilization. ADP,ATP Carrier,ADP,ATP Translocator Protein,Adenine Nucleotide Translocase,ADP Translocase,ATP Translocase,ATP,ADP-Carrier,ATP-ADP Translocase,Adenine Nucleotide Carrier (Mitochondrial),Mitochondrial ADP-ATP Carriers,ADP-ATP Carriers, Mitochondrial,Mitochondrial ADP ATP Carriers
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D019253 Proto-Oncogene Proteins c-bcl-2 Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma. bcl-2 Proto-Oncogene Proteins,c-bcl-2 Proteins,B-Cell Leukemia 2 Family Proteins,BCL2 Family Proteins,BCL2 Proteins,B Cell Leukemia 2 Family Proteins,Family Proteins, BCL2,Proteins, BCL2,Proteins, BCL2 Family,Proto Oncogene Proteins c bcl 2,Proto-Oncogene Proteins, bcl-2,bcl 2 Proto Oncogene Proteins,c bcl 2 Proteins,c-bcl-2, Proto-Oncogene Proteins

Related Publications

Anne-Sophie Belzacq, and Catherine Brenner
February 1976, Journal of bioenergetics,
Anne-Sophie Belzacq, and Catherine Brenner
January 2000, Molecular genetics and metabolism,
Anne-Sophie Belzacq, and Catherine Brenner
January 1993, Journal of inherited metabolic disease,
Anne-Sophie Belzacq, and Catherine Brenner
November 1970, Biochimica et biophysica acta,
Anne-Sophie Belzacq, and Catherine Brenner
January 2010, The international journal of biochemistry & cell biology,
Anne-Sophie Belzacq, and Catherine Brenner
August 2008, PloS one,
Anne-Sophie Belzacq, and Catherine Brenner
February 1993, Biochimica et biophysica acta,
Anne-Sophie Belzacq, and Catherine Brenner
February 1981, Rinsho byori. The Japanese journal of clinical pathology,
Anne-Sophie Belzacq, and Catherine Brenner
December 1994, Archives of biochemistry and biophysics,
Anne-Sophie Belzacq, and Catherine Brenner
May 1978, The Biochemical journal,
Copied contents to your clipboard!