| D007328 |
Insulin |
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). |
Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin |
|
| D011247 |
Pregnancy |
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. |
Gestation,Pregnancies |
|
| D011972 |
Receptor, Insulin |
A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. |
Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors |
|
| D001755 |
Blastocyst |
A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. |
Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos |
|
| D005260 |
Female |
|
Females |
|
| D005314 |
Embryonic and Fetal Development |
Morphological and physiological development of EMBRYOS or FETUSES. |
Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013002 |
Somatomedins |
Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. |
Sulfation Factor,Somatomedin,Factor, Sulfation |
|
| D017527 |
Receptor, IGF Type 2 |
A receptor that is specific for IGF-II and mannose-6-phosphate. The receptor is a 250-kDa single chain polypeptide which is unrelated in structure to the type 1 IGF receptor (RECEPTOR, IGF TYPE 1) and does not have a tyrosine kinase domain. |
IGF Type 2 Receptor,IGF-II Receptor,Receptor, IGF-II,Receptor, Insulin-Like Growth Factor II,Receptor, Insulin-Like Growth Factor Type 2,Receptor, Mannose-6-Phosphate,IGF-2 Receptor,Insulin-Like-Growth-Factor II Receptor,Mannose-6-Phosphate Receptor,Receptors, IGF-2,Receptors, Insulin-Like Growth Factor II,IGF 2 Receptor,IGF II Receptor,IGF-2 Receptors,Insulin Like Growth Factor II Receptor,Mannose 6 Phosphate Receptor,Receptor, IGF II,Receptor, IGF-2,Receptor, Insulin Like Growth Factor II,Receptor, Insulin Like Growth Factor Type 2,Receptor, Insulin-Like-Growth-Factor II,Receptor, Mannose 6 Phosphate,Receptors, IGF 2,Receptors, Insulin Like Growth Factor II |
|
| D047108 |
Embryonic Development |
Morphological and physiological development of EMBRYOS. |
Embryo Development,Embryogenesis,Postimplantation Embryo Development,Preimplantation Embryo Development,Embryonic Programming,Post-implantation Embryo Development,Postnidation Embryo Development,Postnidation Embryo Development, Animal,Pre-implantation Embryo Development,Prenidation Embryo Development, Animal,Development, Embryo,Development, Embryonic,Development, Postnidation Embryo,Embryo Development, Post-implantation,Embryo Development, Postimplantation,Embryo Development, Postnidation,Embryo Development, Pre-implantation,Embryo Development, Preimplantation,Embryonic Developments,Embryonic Programmings,Post implantation Embryo Development,Pre implantation Embryo Development |
|