Do insulin and the insulin like growth factors (IGFs) stimulate growth of the exocrine pancreas? 1987

J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
Cell Biology Research Laboratory, Mount Zion Hospital and Medical Center, San Francisco.

Previous in vivo studies have suggested a long term regulatory role for insulin in the exocrine pancreas. Furthermore, we reported that pancreatic acini have specific receptors for IGF I and II, and using different techniques (acid washing, trypsinisation, electron microscope autoradiography), that CCK8 reduces the internalisation of IGF II. To now directly study the long term role for IGF and insulin in the exocrine pancreas we used AR42J cells, a rat cell line that is derived from a transplantable tumour of the acinar pancreas. Hormone binding studies with 125I-labelled hormones indicated that those cells have insulin receptors, relatively fewer receptors for IGF II but in contrast with normal acini no detectable IGF I receptors. Insulin at concentrations as low as 1 nm stimulated the growth of AR42J cells, as measured by an increase in cell number, DNA and protein content. At 100 nM insulin had maximal effects stimulating the growth by about 50%. IGF I and II had only very weak growth promoting effects probably due to their interaction with the insulin receptor. Additionally insulin increased amylase synthesis over the same concentration range that it stimulated growth. But immunoprecipitation studies revealed that insulin induced a selective increase of amylase synthesis over general protein synthesis. These studies indicate, therefore, that insulin is a growth promoting hormone for AR42J cells and that additionally it seems to specifically regulate amylase synthesis. The role for the IGFs in the exocrine pancreas, however, still remains to be determined.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007335 Insulin-Like Growth Factor II A well-characterized neutral peptide believed to be secreted by the LIVER and to circulate in the BLOOD. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on SOMATOTROPIN. It is believed to be a major fetal growth factor in contrast to INSULIN-LIKE GROWTH FACTOR I, which is a major growth factor in adults. IGF-II,Multiplication-Stimulating Activity,Somatomedin MSA,IGF-2,Insulin Like Growth Factor II,Insulin-Like Somatomedin Peptide II,Multiplication-Stimulating Factor,Somatomedin A,Factor, Multiplication-Stimulating,Insulin Like Somatomedin Peptide II,Multiplication Stimulating Activity,Multiplication Stimulating Factor
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D000681 Amylases A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-. Diastase,Amylase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
August 1992, Endocrinology,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
January 1992, Reproduction, fertility, and development,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
August 1992, Psychoneuroendocrinology,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
November 2005, Gynecologic oncology,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
February 1998, Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
January 1992, Annali dell'Istituto superiore di sanita,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
August 1993, Molecular reproduction and development,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
December 2011, Growth factors (Chur, Switzerland),
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
December 1993, Growth regulation,
J Mössner, and C D Logsdon, and I D Goldfine, and J A Williams
April 1991, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!