Identification of serine and histidine adducts in complexes of trypsin and trypsinogen with peptide and nonpeptide boronic acid inhibitors by 1H NMR spectroscopy. 1992

E Tsilikounas, and C A Kettner, and W W Bachovchin
Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111.

We have previously shown, in 15N NMR studies of the enzyme's active site histidine residue, that boronic acid inhibitors can form two distinct types of complexes with alpha-lytic protease. Inhibitors that are structural analogs of good alpha-lytic protease substrates form transition-state-like tetrahedral complexes with the active site serine whereas those that are not form complexes in which N epsilon 2 of the active site histidine is covalently bonded to the boron of the inhibitor. This study also demonstrated that the serine and histidine adduct complexes exhibit quite distinctive and characteristic low-field 1H NMR spectra [Bachovchin, W. W., Wong, W. Y. L., Farr-Jones, S., Shenvi, A. B., & Kettner, C. A. (1988) Biochemistry 27, 7689-7697]. Here we have used low-field 1H NMR diagnostically for a series of boronic acid inhibitor complexes of trypsin and trypsinogen. The results show that H-D-Val-Leu-boroArg and Ac-Gly-boroArg, analogs of good trypsin substrates, form transition-state-like serine adducts with trypsin, whereas the nonsubstrate analog inhibitors boric acid, methane boronic acid, butane boronic acid, and triethanolamine borate all form histidine adducts, thereby paralleling the previous results obtained with alpha-lytic protease. However, with trypsinogen, Ac-Gly-boroArg forms predominantly a histidine adduct while H-D-Val-Leu-boroArg forms both histidine and serine adducts, with the histidine adduct predominating below pH 8.0 and the serine adduct predominating above pH 8.0.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D001888 Boric Acids Inorganic and organic derivatives of boric acid either B(OH)3 or, preferably H3BO3. Acids, Boric
D001897 Boronic Acids Inorganic or organic compounds that contain the basic structure RB(OH)2. Boronic Acid,Acid, Boronic,Acids, Boronic
D006639 Histidine An essential amino acid that is required for the production of HISTAMINE. Histidine, L-isomer,L-Histidine,Histidine, L isomer,L-isomer Histidine
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012694 Serine A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids. L-Serine,L Serine

Related Publications

E Tsilikounas, and C A Kettner, and W W Bachovchin
February 1996, Biochemistry,
E Tsilikounas, and C A Kettner, and W W Bachovchin
September 1989, Proceedings of the National Academy of Sciences of the United States of America,
E Tsilikounas, and C A Kettner, and W W Bachovchin
January 1993, Advances in experimental medicine and biology,
E Tsilikounas, and C A Kettner, and W W Bachovchin
April 1968, European journal of biochemistry,
E Tsilikounas, and C A Kettner, and W W Bachovchin
January 1994, Journal of pharmaceutical and biomedical analysis,
E Tsilikounas, and C A Kettner, and W W Bachovchin
January 1993, Advances in experimental medicine and biology,
E Tsilikounas, and C A Kettner, and W W Bachovchin
March 2002, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry,
Copied contents to your clipboard!