Thermolytic properties of 3-(2-pyridyl)-1-propyl and 2-[N-methyl-N-(2-pyridyl)]aminoethyl phosphate/thiophosphate protecting groups in solid-phase synthesis of oligodeoxyribonucleotides. 2003

Jacek Cieślak, and Serge L Beaucage
Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, Maryland 20892, USA.

Thermolytic groups may serve as alternatives to the conventional 2-cyanoethyl group for phosphate/thiophosphate protection in solid-phase oligonucleotide synthesis to prevent DNA alkylation by acrylonitrile generated under the basic conditions used for oligonucleotide deprotection. Additionally, thermolytic groups are attractive in the context of engineering a "heat-driven" process for the synthesis of oligonucleotides on diagnostic microarrays. In these regards, the potential application of pyridine derivatives as thermolytic phosphate/thiophosphate protecting groups has been investigated. Specifically, 2-pyridinepropanol and 2-[N-methyl-N-(2-pyridyl)]aminoethanol were incorporated into deoxyribonucleoside phosphoramidites 7a-d and 9, which were found as efficient as 2-cyanoethyl deoxyribonucleoside phosphoramidites in solid-phase oligonucleotide synthesis. Whereas the removal of 3-(2-pyridyl)-1-propyl phosphate/thiophosphate protecting groups from oligonucleotides is effected within 30 min upon heating at 55 degrees C in concentrated NH4OH or in an aqueous buffer at pH 7.0, cleavage of 2-[N-methyl-N-(2-pyridyl)]aminoethyl groups occurs spontaneously when their phosphate or phosphorothioate esters are formed during oligonucleotide synthesis. The deprotection of these groups follows a cyclodeesterification process generating the bicyclic salts 13 and 14 as side products. These salts do not alkylate or otherwise modify any DNA nucleobases and do not desulfurize a phosphorothioate diester model under conditions mimicking large-scale oligonucleotide deprotection.

UI MeSH Term Description Entries
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010755 Organophosphates Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P( Organophosphate,Phosphates, Organic,Phosphoric Acid Esters,Organopyrophosphates,Acid Esters, Phosphoric,Esters, Phosphoric Acid,Organic Phosphates
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013873 Thionucleotides Nucleotides in which the base moiety is substituted with one or more sulfur atoms.

Related Publications

Jacek Cieślak, and Serge L Beaucage
February 2003, Current protocols in nucleic acid chemistry,
Jacek Cieślak, and Serge L Beaucage
January 2002, Journal of combinatorial chemistry,
Jacek Cieślak, and Serge L Beaucage
April 2003, Organic letters,
Jacek Cieślak, and Serge L Beaucage
June 2001, Carbohydrate research,
Jacek Cieślak, and Serge L Beaucage
January 2012, Journal of carbohydrate chemistry,
Jacek Cieślak, and Serge L Beaucage
December 1956, Bollettino della Societa italiana di biologia sperimentale,
Jacek Cieślak, and Serge L Beaucage
November 1956, Minerva medica,
Copied contents to your clipboard!