Combined influence of NaCl and sucrose on heat-induced gelation of bovine serum albumin. 2003

Stefan K Baier, and D Julian McClements
Biopolymer and Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.

The combined influence of a strongly interacting cosolvent (NaCl) and a weakly interacting cosolvent (sucrose) on the heat-induced gelation of bovine serum albumin (BSA) was studied. The dynamic shear rheology of 4 wt % BSA solutions containing 0 or 20 wt % sucrose and 0-200 mM NaCl was monitored as they were heated from 30 to 90 degrees C at 1.5 degrees C min(-)(1), held at 90 degrees C for 120 min, and then cooled back to 30 degrees C at -1.5 degrees C min(-)(1). The turbidity of the same solutions was monitored as they were heated from 30 to 95 degrees C at 1.5 degrees C min(-)(1) or held isothermally at 90 degrees C for 10 min. NaCl had a similar effect on BSA solutions that contained 0 or 20 wt % sucrose, with the gelation temperature decreasing and the final gel strength increasing with increasing salt concentration and the greatest changes occurring between 25 and 100 mM NaCl. Nevertheless, the presence of sucrose did lead to an increase in the gelation temperature and final gel strength and a decrease in the final gel turbidity. The impact of NaCl on gel characteristics was attributed primarily to its ability to screen electrostatic interactions between charged protein surfaces, whereas the impact of sucrose was attributed mainly to its ability to increase protein thermal stability and strengthen the attractive forces between proteins through a preferential interaction mechanism.

UI MeSH Term Description Entries
D009391 Nephelometry and Turbidimetry Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam. Turbidimetry,Nephelometry,Turbidimetry and Nephelometry
D005782 Gels Colloids with a solid continuous phase and liquid as the dispersed phase; gels may be unstable when, due to temperature or other cause, the solid phase liquefies; the resulting colloid is called a sol.
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D012212 Rheology The study of the deformation and flow of matter, usually liquids or fluids, and of the plastic flow of solids. The concept covers consistency, dilatancy, liquefaction, resistance to flow, shearing, thixotrophy, and VISCOSITY. Flowmetry,Velocimetry,Velocimetries
D012710 Serum Albumin, Bovine Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed) Fetal Bovine Serum,Fetal Calf Serum,Albumin Bovine,Bovine Albumin,Bovine Serum Albumin,Albumin, Bovine,Albumin, Bovine Serum,Bovine Serum, Fetal,Bovine, Albumin,Calf Serum, Fetal,Serum, Fetal Bovine,Serum, Fetal Calf
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose
D055672 Static Electricity The accumulation of an electric charge on a object Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges

Related Publications

Stefan K Baier, and D Julian McClements
February 2021, Food chemistry,
Stefan K Baier, and D Julian McClements
April 2009, European biophysics journal : EBJ,
Stefan K Baier, and D Julian McClements
January 1993, Bioscience, biotechnology, and biochemistry,
Stefan K Baier, and D Julian McClements
November 2019, Food chemistry,
Stefan K Baier, and D Julian McClements
April 2011, Journal of agricultural and food chemistry,
Stefan K Baier, and D Julian McClements
October 1978, Journal of dairy science,
Stefan K Baier, and D Julian McClements
June 2000, Biochimica et biophysica acta,
Stefan K Baier, and D Julian McClements
July 2022, International journal of molecular sciences,
Stefan K Baier, and D Julian McClements
April 2018, Journal of the science of food and agriculture,
Copied contents to your clipboard!