Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli. 1992

R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
Institute for Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, Zürich.

Sarcomeric mitochondrial creatine kinase (Mib-CK) of chicken was expressed in Escherichia coli as a soluble enzyme by using an inducible phage-T7 promoter. Up to one third of the protein in E. coli extracts consisted of soluble recombinant Mib-CK in an enzymically active form. Approx. 20 mg of nearly-homogenous Mib-CK was isolated in a two-step isolation procedure starting with 1 litre of isopropyl beta-D-thiogalactopyranoside-induced E. coli culture, whereas previous attempts to express other CK genes in E. coli have resulted in 20-fold lower yields and inclusion-body formation. Selection of the Mib-CK expression plasmid on media containing kanamycin rather than ampicillin extended the time period of maximal Mib-CK expression. Recombinant Mib-CK displayed an identical N-terminal amino acid sequence, identical Km for phosphocreatine and Vmax. values, the same electrophoretic behaviour and the same immunological cross-reactivity as the native enzyme isolated from chicken heart mitochondria. The recombinant Mib-CK had the same molecular mass as native chicken Mib-CK in m.s. analysis, indicating that post-translational modification of the enzyme in chicken tissue does not occur. As judged by gel-permeation chromatography and electron microscopy, recombinant enzyme formed predominantly octameric oligomers with the same overall structure as the chicken heart enzyme. Furthermore, the enzymes isolated from both sources formed protein crystals of space group P42(1)2, when grown in the absence of ATP, with one Mi-CK octamer per asymmetric unit. The indistinguishable X-ray-diffraction patterns indicate identical structures for the native and recombinant proteins.

UI MeSH Term Description Entries
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
February 1996, Protein science : a publication of the Protein Society,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
May 1995, Biochemistry,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
June 1995, The Biochemical journal,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
January 1991, Biochimica et biophysica acta,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
November 1988, The Journal of biological chemistry,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
January 1989, Biokhimiia (Moscow, Russia),
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
October 1999, Protein expression and purification,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
July 1989, Journal of molecular endocrinology,
R Furter, and P Kaldis, and E M Furter-Graves, and T Schnyder, and H M Eppenberger, and T Wallimann
May 1987, Journal of biochemistry,
Copied contents to your clipboard!