Transforming growth factor beta and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle. 1992

R C Larson, and G G Ignotz, and W B Currie
Department of Animal Science, Cornell University, Ithaca, New York 14853.

Developmentally competent bovine blastocysts were produced by adding transforming growth factor beta (TGF beta) and basic fibroblast growth factor (bFGF) to serum-free cultures of in vitro produced, 2-cell bovine embryos. The effects of TGF beta were evaluated because this growth factor signals synthesis and secretion of the extracellular matrix component fibronectin and its receptor. Previous investigations have demonstrated that fibronectin promotes early bovine embryo development in vitro. The effects of TGF beta can be potentiated by bFGF; bFGF itself is an effector of protein synthesis and a potent mitogen. A positive interaction between the 2 growth factors resulted in 38.8% of fertilized oocytes maturing beyond the 16-cell stage; of these, 24.6% formed blastocysts. Transfer of early blastocysts produced using serum-free medium supplemented with growth factors resulted in pregnancy in 3 of 9 recipients. These results support the hypothesis that TGF beta and bFGF act synergistically to promote development of bovine embryos beyond the "8-cell block" observed in vitro.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

R C Larson, and G G Ignotz, and W B Currie
January 1989, Progress in growth factor research,
R C Larson, and G G Ignotz, and W B Currie
January 1988, Growth factors (Chur, Switzerland),
R C Larson, and G G Ignotz, and W B Currie
September 1993, Trends in pharmacological sciences,
R C Larson, and G G Ignotz, and W B Currie
March 1994, Proceedings of the National Academy of Sciences of the United States of America,
R C Larson, and G G Ignotz, and W B Currie
April 2004, Zhonghua yi xue za zhi,
R C Larson, and G G Ignotz, and W B Currie
October 2003, Acta ophthalmologica Scandinavica,
R C Larson, and G G Ignotz, and W B Currie
April 1995, Cancer research,
Copied contents to your clipboard!