Regulation of urokinase receptor expression by phosphoglycerate kinase. 2004

Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
Department of Specialty Care Services, The University of Texas Health Center at Tyler, Tyler, TX 75708, USA. sreerama.shetty@uthct.edu

Post-transcriptional regulation represents a major mechanism by which eukaryotic gene expression is regulated through cis-trans interactions that serve as signals for rapid alterations of messenger RNA (mRNA) stability. Regulation of urokinase-type plasminogen activator receptor (uPAR) mRNA involves the interaction of a uPAR mRNA coding region sequence with a 50 kD uPAR mRNA binding protein. We purified this protein from human bronchial epithelial (Beas2B) cells and identified it as phosphoglycerate kinase (PGK). We cloned PGK cDNA by polymerase chain reaction and expressed the recombinant PGK protein, which specifically bound the uPAR mRNA coding region by gel mobility shift and Northwestern blotting. We also confirmed a direct interaction of PGK protein with uPAR mRNA by immunoprecipitation. Overexpression of PGK in uPAR-overproducing H157 lung carcinoma cells resulted in decreased cytoplasmic uPAR mRNA and cell surface uPAR protein expression. Reduced uPAR mRNA expression involved decreased stability of the uPAR mRNA. Decline in 3H-thymidine incorporation and migration occurred in H157 cells transfected with PGK cDNA. These results demonstrate that PGK regulates uPAR expression at the post-transcriptional level.

UI MeSH Term Description Entries
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
February 2010, Molecular and cellular biochemistry,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
February 2007, American journal of physiology. Lung cellular and molecular physiology,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
February 2001, The Journal of biological chemistry,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
August 1994, Blood,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
June 2008, Biochemistry,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
April 2006, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
June 2003, International journal of cancer,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
September 1996, Science (New York, N.Y.),
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
August 2007, Molecular and cellular biology,
Sreerama Shetty, and Harish Muniyappa, and Prathap K S Halady, and Steven Idell
December 1991, Thrombosis and haemostasis,
Copied contents to your clipboard!