Cluster characterisation and temporal expression of porcine sarcomeric myosin heavy chain genes. 2003

Y M Sun, and N Da Costa, and K C Chang
School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.

Members of the myosin heavy chain (MyHC) gene family are subjected to temporal regulation of gene switching during development. One strategy to the identification of cis-acting regulatory elements that are involved in temporal or fibre-type specific regulation is to undertake a comparative analysis of the MyHC gene family between the pig, an important target species, and other mammals, like human whose entire genome has been recently sequenced. Towards this end, we report here on the isolation, and characterisation of the porcine cardiac (MyHC slow/beta and alpha) and skeletal MyHC (embryonic, 2a, 2x, 2b and perinatal) gene clusters, and their structural comparisons with mouse and human clusters. The genome organisation of both clusters in the pig, human and mouse is conserved as having the same gene order, similar intergenic distances, and in the same head-to-tail orientation. For a period of pre-natal muscle growth, relative expression of MyHC isoforms, as determined by TaqMan real-time RT-PCR, correlated with the gene order in the skeletal MyHC cluster (embryonic > 2a > 2x > 2b) suggesting the possible presence of DNA elements on the same side as the MyHC embryonic gene that direct temporal regulation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Y M Sun, and N Da Costa, and K C Chang
January 1983, The Journal of biological chemistry,
Y M Sun, and N Da Costa, and K C Chang
June 2004, Molecular biology and evolution,
Y M Sun, and N Da Costa, and K C Chang
June 1986, Medicine and science in sports and exercise,
Y M Sun, and N Da Costa, and K C Chang
June 2010, BMC molecular biology,
Y M Sun, and N Da Costa, and K C Chang
March 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Y M Sun, and N Da Costa, and K C Chang
January 2000, Journal of muscle research and cell motility,
Y M Sun, and N Da Costa, and K C Chang
May 1999, Poultry science,
Y M Sun, and N Da Costa, and K C Chang
June 1999, Cell and tissue research,
Y M Sun, and N Da Costa, and K C Chang
June 1987, Circulation research,
Copied contents to your clipboard!