Evolution of sarcomeric myosin heavy chain genes: evidence from fish. 2004

Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
Institute of Neurosciences, University of Oregon, USA. mcguigan@darkwing.uoregon.edu

Myosin heavy chain (MYH) is a major structural protein, integral to the function of sarcomeric muscles. We investigated both exon-intron organization and amino acid sequence of sarcomeric MYH genes to infer their evolutionary history in vertebrates. Our results were consistent with the hypothesis that a multigene family encoded MYH proteins in the ancestral chordate, one gene ancestral to human MYH16 and its homologues and another ancestral to all other vertebrate sarcomeric MYH genes. We identified teleost homologues of mammalian skeletal and cardiac MYH genes, indicating that the ancestors of those genes were present before the divergence of actinopterygians and sarcopterygians. Indeed, the ancestral skeletal genes probably duplicated at least once before the divergence of teleosts and tetrapods. Fish homologues of mammalian skeletal MYH are expressed in skeletal tissue and homologues of mammalian cardiac genes are expressed in the heart but, unlike mammals, there is overlap between these expression domains. Our analyses inferred two other ancestral vertebrate MYH genes, giving rise to human MYH14 and MYH15 and their homologues. Relative to the skeletal and cardiac genes, MYH14 and MYH15 homologues are characterized by evolution of intron position, differences in evolutionary rate between the functionally differentiated head and rod of the myosin protein, and possible evolution of function among vertebrate classes. Tandem duplication and gene conversion appear to have played major roles in the evolution of at least cardiac and skeletal MYH genes in fish. One outcome of this high level of concerted evolution is that different fish taxa have different suites of MYH genes, i.e., true orthologs do not exist.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012518 Sarcomeres The repeating contractile units of the MYOFIBRIL, delimited by Z bands along its length. Sarcomere
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
January 1983, The Journal of biological chemistry,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
January 1994, Society of General Physiologists series,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
January 2003, Journal of muscle research and cell motility,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
May 1999, Poultry science,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
September 1995, Journal of molecular evolution,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
June 1999, Cell and tissue research,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
December 2007, Physiological genomics,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
February 1994, Insect molecular biology,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
June 1986, Medicine and science in sports and exercise,
Katrina McGuigan, and Patrick C Phillips, and John H Postlethwait
June 1987, Circulation research,
Copied contents to your clipboard!