Proteinaceous inhibitors of endo-beta-glucanases. 2004

William S York, and Qiang Qin, and Jocelyn K C Rose
Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 220 Riverbend Road, Athens, GA 30602-4712, USA. will@ccrc.uga.edu

Both plants and filamentous phytopathogens secrete proteins that inhibit endo-beta-glucanases. The first endo-beta-glucanase inhibitor proteins to be discovered are XEGIP, a tomato protein that inhibits fungal xyloglucan-specific endo-beta-1,4-glucanases, and GIP1, an oomycete protein that inhibits endo-beta-1,3-glucanases produced by the plant host. These inhibitor proteins act by forming high-affinity complexes with their endoglucanase ligands. A family of XEGIP-like proteins has been identified. At least one member of this family (extracellular dermal glycoprotein, EDGP) has been shown to have endoglucanase-inhibitor activity, while other members have sequence similarity to a xylanase inhibitor from wheat (TAXI-1). The oomycete inhibitor GIP1 is a catalytically inactive serine protease homolog (SPH) whose structure is unrelated to XEGIP. Both types of inhibitor proteins are likely to affect the interactions of plants with filamentous phytopathogens, and a basic model describing their roles in pathogenesis is proposed.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009868 Oomycetes Eukaryotes in the group STRAMENOPILES, formerly considered FUNGI, whose exact taxonomic level is unsettled. Many consider Oomycetes (Oomycota) a phylum in the kingdom Stramenopila, or alternatively, as Pseudofungi in the phylum Heterokonta of the kingdom Chromista. They are morphologically similar to fungi but have no close phylogenetic relationship to them. Oomycetes are found in both fresh and salt water as well as in terrestrial environments. (Alexopoulos et al., Introductory Mycology, 4th ed, pp683-4). They produce flagellated, actively motile spores (zoospores) that are pathogenic to many crop plants and FISHES. Oomycota,Oomycete,Oomycotas
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002480 Cellulase An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans. Endo-1,4-beta-Glucanase,Cellulysin,Endoglucanase,Endoglucanase A,Endoglucanase C,Endoglucanase E,Endoglucanase IV,Endoglucanase Y,beta-1,4-Glucan-4-Glucanohydrolase,Endo 1,4 beta Glucanase,beta 1,4 Glucan 4 Glucanohydrolase
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006790 Host-Parasite Interactions The relationship between an invertebrate and another organism (the host), one of which lives at the expense of the other. Traditionally excluded from definition of parasites are pathogenic BACTERIA; FUNGI; VIRUSES; and PLANTS; though they may live parasitically. Host-Parasite Relations,Parasite-Host Relations,Host-Parasite Relationship,Parasite-Host Interactions,Host Parasite Interactions,Host Parasite Relations,Host Parasite Relationship,Host-Parasite Interaction,Host-Parasite Relation,Host-Parasite Relationships,Interaction, Host-Parasite,Interaction, Parasite-Host,Interactions, Host-Parasite,Interactions, Parasite-Host,Parasite Host Interactions,Parasite Host Relations,Parasite-Host Interaction,Parasite-Host Relation,Relation, Host-Parasite,Relation, Parasite-Host,Relations, Host-Parasite,Relations, Parasite-Host,Relationship, Host-Parasite,Relationships, Host-Parasite
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

William S York, and Qiang Qin, and Jocelyn K C Rose
January 1985, Analytical biochemistry,
William S York, and Qiang Qin, and Jocelyn K C Rose
January 1985, Analytical biochemistry,
William S York, and Qiang Qin, and Jocelyn K C Rose
February 2001, Biochemistry. Biokhimiia,
William S York, and Qiang Qin, and Jocelyn K C Rose
March 1994, Journal of biochemical and biophysical methods,
William S York, and Qiang Qin, and Jocelyn K C Rose
March 1978, Biochimica et biophysica acta,
William S York, and Qiang Qin, and Jocelyn K C Rose
April 2000, International journal of biological macromolecules,
William S York, and Qiang Qin, and Jocelyn K C Rose
December 1988, Gene,
William S York, and Qiang Qin, and Jocelyn K C Rose
December 1991, Biotechnology and applied biochemistry,
William S York, and Qiang Qin, and Jocelyn K C Rose
March 1978, Biochimica et biophysica acta,
William S York, and Qiang Qin, and Jocelyn K C Rose
July 1982, Applied and environmental microbiology,
Copied contents to your clipboard!