Purification, characterization, regulation and molecular cloning of mitochondrial protein kinases. 1992

R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202.

The mitochondrial kinases responsible for the phosphorylation and inactivation of rat heart pyruvate dehydrogenase complex and the rat liver and heart branched-chain alpha-ketoacid dehydrogenase complexes have been purified to homogeneity. The branched-chain alpha-ketoacid dehydrogenase kinase is composed of one subunit with a molecular weight of 44 kDa; pyruvate dehydrogenase kinase has two subunits with molecular weights of 48 (alpha) and 45 kDa (beta). Proteolysis maps of branched-chain alpha-ketoacid dehydrogenase kinase and the two subunits of pyruvate dehydrogenase kinase are different, suggesting that all subunits are different entities. The alpha subunit of the rat heart pyruvate dehydrogenase kinase was selectively cleaved by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of pyruvate dehydrogenase kinase resides in this subunit. Polyclonal antibodies against branched-chain alpha-ketoacid dehydrogenase kinase, purified by an epitope selection method, bound only to the 44 kDa polypeptide of the branched-chain alpha-ketoacid dehydrogenase complex, substantiating that the 44 kDa protein corresponds to the kinase for this complex. Both kinases exhibited strong substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificities toward histones. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by its purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the complex. cDNAs encoding the branched-chain alpha-ketoacid dehydrogenase kinase have been isolated from rat heart and rat liver lambda gt11 libraries. This represents the first successful cloning of a mitochondrial protein kinase. Preliminary data suggest that two different isoforms of the kinase may exist in different ratios in various tissues. No evidence was found for induction of the branched-chain alpha-ketoacid dehydrogenase complex nor its kinase by clofibric acid. Rather, clofibric acid is a potent inhibitor of the activity of the branched-chain alpha-ketoacid dehydrogenase kinase and this may be the molecular mechanism responsible for the myotonic effects of clofibric acid in man.

UI MeSH Term Description Entries
D007651 Keto Acids Carboxylic acids that contain a KETONE group. Oxo Acids,Oxoacids,Acids, Keto,Acids, Oxo
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011488 Protein Deficiency A nutritional condition produced by a deficiency of proteins in the diet, characterized by adaptive enzyme changes in the liver, increase in amino acid synthetases, and diminution of urea formation, thus conserving nitrogen and reducing its loss in the urine. Growth, immune response, repair, and production of enzymes and hormones are all impaired in severe protein deficiency. Protein deficiency may also arise in the face of adequate protein intake if the protein is of poor quality (i.e., the content of one or more amino acids is inadequate and thus becomes the limiting factor in protein utilization). (From Merck Manual, 16th ed; Harrison's Principles of Internal Medicine, 12th ed, p406) Deficiency, Protein,Deficiencies, Protein,Protein Deficiencies
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002994 Clofibrate A fibric acid derivative used in the treatment of HYPERLIPOPROTEINEMIA TYPE III and severe HYPERTRIGLYCERIDEMIA. (From Martindale, The Extra Pharmacopoeia, 30th ed, p986) Athromidin,Atromid,Atromid S,Clofibric Acid, Ethyl Ester,Ethyl Chlorophenoxyisobutyrate,Miscleron,Miskleron,Chlorophenoxyisobutyrate, Ethyl

Related Publications

R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
April 1982, The Journal of biological chemistry,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
January 1990, Methods in enzymology,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
January 1997, The Journal of biological chemistry,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
April 2009, Peptides,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
March 1999, Molecular reproduction and development,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
March 2016, Developmental and comparative immunology,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
December 1985, Archives of biochemistry and biophysics,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
January 1974, Methods in enzymology,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
December 1995, Annals of the New York Academy of Sciences,
R A Harris, and K M Popov, and Y Shimomura, and Y Zhao, and J Jaskiewicz, and N Nanaumi, and M Suzuki
March 1992, Current genetics,
Copied contents to your clipboard!