Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. 1997

P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA.

The human mitochondrial serine hydroxymethyltransferase (mSHMT) gene was isolated, sequenced, and characterized. The 4.5-kilobase gene contains 10 introns and 11 exons, with all splice junctions conforming to the GT/AG rule. The 5' promoter region contains consensus motifs for several regulatory proteins including PEA-3, Sp-1, AP-2, and a CCCTCCC motif common to many genes expressed in liver. Consensus TATA or CAAT sequence motifs are not present, and primer extension and 5'-rapid amplification of cDNA ends studies suggest that transcription initiation occurs at multiple sites. The mitochondrial leader sequence region of the deduced mRNA contains two potential ATG start sites, which are encoded by separate exons. The intervening 891-base pair intron contains consensus promoter elements suggesting that mSHMT may be transcribed from alternate promoters. 5'-Rapid amplification of cDNA ends analysis demonstrated that the first ATG is transcribed in human MCF-7 cells. However, transfection of Chinese hamster ovary cells deficient in mSHMT activity with the human mSHMT gene lacking exon 1 overcame the cell's glycine auxotrophy and restored intracellular glycine concentrations to that observed in wild-type cells, showing that exon 1 is not essential for mSHMT localization or activity and that translation initiation from the second ATG is sufficient for mSHMT import into the mitochondria. Mitochondrial SHMT mRNA levels in MCF-7 cells did not vary during the cell cycle and were not affected by the absence of glycine, serine, folate, thymidylate, or purines from the media.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012696 Glycine Hydroxymethyltransferase A pyridoxal phosphate enzyme that catalyzes the reaction of glycine and 5,10-methylene-tetrahydrofolate to form serine. It also catalyzes the reaction of glycine with acetaldehyde to form L-threonine. EC 2.1.2.1. Serine Aldolase,Serine Hydroxymethylase,Serine Hydroxymethyltransferase,Serine Transhydroxymethylase,Threonine Aldolase,Allothreonine Aldolase,Aldolase, Allothreonine,Aldolase, Serine,Aldolase, Threonine,Hydroxymethylase, Serine,Hydroxymethyltransferase, Glycine,Hydroxymethyltransferase, Serine,Transhydroxymethylase, Serine

Related Publications

P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
April 1998, Gene,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
April 2007, Protein expression and purification,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
January 1984, Gene,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
June 2008, Parasitology international,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
September 2015, Journal of integrative plant biology,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
November 1995, Biochemical Society transactions,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
August 2022, Journal of basic microbiology,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
April 2006, Protein expression and purification,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
December 1997, Wei sheng wu xue bao = Acta microbiologica Sinica,
P J Stover, and L H Chen, and J R Suh, and D M Stover, and K Keyomarsi, and B Shane
April 1983, Gene,
Copied contents to your clipboard!