Antigen presentation and immune regulatory capacity of immature and mature-enriched antigen presenting (dendritic) cells derived from human bone marrow. 2004

Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
Department of Surgery, University of Miami School of Medicine, Miami, FL 33101, USA. yjin@med.miami.edu

Several reports including those from this laboratory have demonstrated that bone marrow cells (BMC) downregulate in vitro both mixed leukocyte reaction and cytotoxic T lymphocyte reactions. We consequently hypothesized that a general property of immature cells of hematopoietic organs is their ability to suppress immune reactivity. As one of these suppressive activities, the lack of costimulatory molecules was proposed as a mechanism by which immature antigen presenting cells of the bone marrow might be involved. In the present report, we used two culture environments, each of which would regulate a different maturation pattern of human bone marrow-derived enriched dendritic antigen presenting cells (DC or APC) to determine the respective effects on in vitro immune regulatory function. Human BMC depleted of CD3+ cells were cultured with either: interleukin-4 (IL-4) and granulocyte macrophage-colony stimulating factor (GM-CSF), to maintain DC-enriched populations in an immature state (iAPC); or an interferon-gamma (IFNgamma), tumor necrosis factor alpha (TNF-alpha), GM-CSF, LPS, and IL-6 cocktail to promote the maturation of DC-enriched APC (mAPC). These iAPC and mAPC were, respectively, phenotypically characterized and also tested in vitro for the following: (1) both direct and indirect-antigen presentation functions; (2) immune regulatory functions on the response of autologous and allogeneic peripheral blood lymphocytes (PBL); and (3) Western blot analysis determining the levels of both major histocompatibility complex (MHC) class I related cytoplasmic transporter molecules associated with antigen processing (TAP1) and as well as proteasome activator molecules (PA28alpha). The iAPC population expressed fewer dendritic cell markers (CD83 and DCsign), and costimulator molecules (CD86 and CD40) than the mAPC, such that there was an approximate threefold increase in expression of CD83, 2.5-fold increase in DCsign, and a threefold increase in CD40 and CD86 on mAPC than on iAPC (p=0.005 for CD83; p=0.001 for DCsign; p=0.001 for CD86; and p=0.001 for CD40). In lymphoproliferative assays, indirect and direct alloantigen presentation by iAPC was weaker than by mAPC (p=0.05 and 0.04). In addition, iAPC were able to downregulate allogeneic CTL responses. Also, after pulsing with Epstein-Barr virus (EBV) protein antigens, the iAPC were less efficient in their presentation to autologous EBV-specific T-cell lines, and caused an inhibition of EBV-CTL generation. The expression of TAP1 and PA28alpha was reduced in iAPC in comparison to mAPC. These findings support the notion that a maturation state of BMC-derived APC correlates with their capacity to present antigen. The observed in vitro deficiency of this function by immature bone marrow cells may therefore contribute to the immune downregulatory capacity seen in the BMC compartment.

UI MeSH Term Description Entries
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D007519 Isoantigens Antigens that exist in alternative (allelic) forms in a single species. When an isoantigen is encountered by species members who lack it, an immune response is induced. Typical isoantigens are the BLOOD GROUP ANTIGENS. Alloantigens,Alloantigen,Isoantigen
D007959 Lymphocyte Culture Test, Mixed Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens. Leukocyte Culture Test, Mixed,Mixed Lymphocyte Culture Test,Mixed Lymphocyte Reaction,Mixed Leukocyte Culture Test,Mixed Leukocyte Reaction,Leukocyte Reaction, Mixed,Leukocyte Reactions, Mixed,Lymphocyte Reaction, Mixed,Lymphocyte Reactions, Mixed,Mixed Leukocyte Reactions,Mixed Lymphocyte Reactions
D007963 Leukocytes, Mononuclear Mature LYMPHOCYTES and MONOCYTES transported by the blood to the body's extravascular space. They are morphologically distinguishable from mature granulocytic leukocytes by their large, non-lobed nuclei and lack of coarse, heavily stained cytoplasmic granules. Mononuclear Leukocyte,Mononuclear Leukocytes,PBMC Peripheral Blood Mononuclear Cells,Peripheral Blood Human Mononuclear Cells,Peripheral Blood Mononuclear Cell,Peripheral Blood Mononuclear Cells,Leukocyte, Mononuclear
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell

Related Publications

Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
October 2003, Immunology letters,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
February 2023, Scientific reports,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
November 2006, Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
July 2011, Nanoscale research letters,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
March 1994, Journal of immunology (Baltimore, Md. : 1950),
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
April 2003, Investigative ophthalmology & visual science,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
September 2012, Immunologic research,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
March 1998, European journal of immunology,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
December 2001, American journal of physiology. Lung cellular and molecular physiology,
Yide Jin, and Laphalle Fuller, and Gaetano Ciancio, and George W Burke, and Andreas G Tzakis, and Camillo Ricordi, and Joshua Miller, and Violet Esquenzai
July 1999, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!