The protein tyrosine phosphatase CD45 is required for interleukin 6 signaling in U266 myeloma cells. 2004

Qun Zhou, and Yuan Yao, and Solveig G Ericson
Blood and Marrow Transplant and Hematologic Malignancy Program, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia 26506, USA.

The objective of this study was to examine whether CD45 mediates interleukin 6 (IL-6) signaling in human multiple myeloma (MM) cells. We chose U266 MM cells as a study model and isolated cells into CD45+ and CD45- subpopulations. CD45+ and CD45- U266 cells were cocultured with bone marrow stromal cells (BMSCs). IL-6-induced proliferation in CD45+ U266 cells was inhibited by vanadate, a potent protein tyrosine phosphatase inhibitor. However, IL-6-independent CD45- U266 cell growth was not affected by vanadate. CD45+ U266 cells, but not CD45- U266 cells, have the capability of cell adhesion concomitant with actin filament polymerization at the adherent cells. Adhesion of CD45+ U266 cells to BMSCs was impaired by vanadate. We clarified the signaling differences between CD45+ and CD45- U266 cells in response to IL-6. In CD45+ U266 cells, IL-6 increased tyrosine phosphorylation of gp130 and STAT3 and stimulated the level of Mcl-1 protein expression. An association between CD45 and the Src-family protein tyrosine kinase, Lyn, was maintained in the presence of IL-6; the formation of the CD45/Lyn complex was impaired by vanadate. Additionally, IL-6-induced Lyn kinase activity in CD45+ U266 cells was increased by the cross-linking of CD45, and this increase was due to the dephosphorylation of Tyr507 at Lyn. In conclusion, IL-6-dependent MM cells require CD45 to initiate IL-6 signaling and to maintain Lyn kinase activity, both of which are essential for cell proliferation and cell adhesion.

UI MeSH Term Description Entries
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009101 Multiple Myeloma A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY. Myeloma, Plasma-Cell,Kahler Disease,Myeloma, Multiple,Myeloma-Multiple,Myelomatosis,Plasma Cell Myeloma,Cell Myeloma, Plasma,Cell Myelomas, Plasma,Disease, Kahler,Multiple Myelomas,Myeloma Multiple,Myeloma, Plasma Cell,Myeloma-Multiples,Myelomas, Multiple,Myelomas, Plasma Cell,Myelomas, Plasma-Cell,Myelomatoses,Plasma Cell Myelomas,Plasma-Cell Myeloma,Plasma-Cell Myelomas
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Qun Zhou, and Yuan Yao, and Solveig G Ericson
January 1996, The Journal of biological chemistry,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
January 2003, Current topics in medicinal chemistry,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
December 1994, Molecular and cellular biology,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
September 2000, Leukemia & lymphoma,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
January 1995, Proceedings of the National Academy of Sciences of the United States of America,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
September 2000, Experimental hematology,
Qun Zhou, and Yuan Yao, and Solveig G Ericson
January 1994, Annual review of immunology,
Copied contents to your clipboard!