Nickel-dependent reconstitution of hydrogenase apoprotein in Bradyrhizobium japonicum Hupc mutants and direct evidence for a nickel metabolism locus involved in nickel incorporation into the enzyme. 1992

C Fu, and R J Maier
Department of Biology, Johns Hopkins University, Baltimore, MD 21218.

A double mutant (JH103K10) was created from hydrogenase constitutive mutant (JH103) by replacement of a chromosomal 0.60 kb nickel metabolism related locus with a kanamycin resistance gene. The double mutant required 10 to 20 times more nickel (Ni) to achieve near parental strain levels of hydrogenase activity. In the absence of nickel, both JH103K10 and JH103 synthesized high levels of (inactive) hydrogenase apoprotein (large subunit, 65 kDa). With nickel, the double mutant JH103K10 synthesized the same level of hydrogenase apoenzyme (65-kDa subunit) as the JH103 parent strain; however, whole cell hydrogenase activity in JH103K10 was less than half of that in JH103, and the CPM (due to 63Ni in hydrogenase) of membranes and the calculated ratio of nickel per unit of hydrogenase enzyme of the double mutant were 40% of that in JH103. Therefore, the difference in hydrogenase activities between the double mutant and the Hupc strain can be accounted for by different abilities of the strains to incorporate nickel into the hydrogenase apoenzyme. The addition of nickel ions to previously Ni-starved and then chloramphenicol-treated Bradyrhizobium japonicum whole cells (JH103 and JH103K10) resulted in (an in vivo) restoration of hydrogenase activity, suggesting that the apoprotein synthesized in the Ni-free cultures could be activated by addition of nickel even in the absence of protein synthesis. The extent of reconstitution of active hydrogenase by nickel was greater in the absence of chloramphenicol. Hydrogenase apoprotein could not be activated by nickel in vitro even with the addition of ATP. The successful in vivo but not in vitro results suggest that enzymatic but cell-disruption labile factors are required for Ni incorporation into hydrogenase.

UI MeSH Term Description Entries
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D009532 Nickel A trace element with the atomic symbol Ni, atomic number 28, and atomic weight 58.69. It is a cofactor of the enzyme UREASE.
D011868 Radioisotopes Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Daughter Isotope,Daughter Nuclide,Radioactive Isotope,Radioactive Isotopes,Radiogenic Isotope,Radioisotope,Radionuclide,Radionuclides,Daughter Nuclides,Daugter Isotopes,Radiogenic Isotopes,Isotope, Daughter,Isotope, Radioactive,Isotope, Radiogenic,Isotopes, Daugter,Isotopes, Radioactive,Isotopes, Radiogenic,Nuclide, Daughter,Nuclides, Daughter
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006864 Hydrogenase An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis. Ferredoxin Hydrogenase,H2-Oxidizing Hydrogenase,Hydrogenlyase,H2 Oxidizing Hydrogenase,Hydrogenase, Ferredoxin,Hydrogenase, H2-Oxidizing
D001051 Apoenzymes The protein components of enzyme complexes (HOLOENZYMES). An apoenzyme is the holoenzyme minus any cofactors (ENZYME COFACTORS) or prosthetic groups required for the enzymatic function. Apoenzyme
D012230 Rhizobiaceae A family of gram-negative bacteria which are saprophytes, symbionts, or plant pathogens. Bradyrhizobium lupini,Neorhizobium galegae,Rhizobium galegae,Rhizobium lupini
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

C Fu, and R J Maier
January 1993, Archives of microbiology,
C Fu, and R J Maier
November 1990, The Journal of biological chemistry,
Copied contents to your clipboard!