Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates. 2004

Amy H Huang, and Richard L Robertson
Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, USA.

OBJECTIVE Intracranial hemorrhage in term neonates often results from asphyxia, obvious birth trauma, blood dyscrasia, or vascular malformation but may occur without an obvious inciting event. In this study, we review the clinical and neuroimaging features of healthy term neonates presenting with spontaneous superficial parenchymal and leptomeningeal (ie, subpial or subarachnoid) hemorrhage. METHODS The clinical records and neuroimaging studies of seven term neonates with spontaneous superficial parenchymal and leptomeningeal hemorrhage were retrospectively reviewed. All underwent diffusion-weighted MR imaging and 6 underwent CT within 72 hours of birth. Magnetic susceptibility-weighted imaging was performed in five, MR angiography in two, and MR venography in two. Follow-up MR imaging was performed in one infant. Clinical follow-up was done in four patients. RESULTS All neonates had normal birth weights and high 5-minute APGAR scores. All were delivered vaginally (one with forceps assistance, and one with vacuum assistance). No blood dyscrasias were noted. Within 36 hours after delivery, all neonates presented with apnea or seizures or both. Neuroimaging subsequently revealed superficial parenchymal and leptomeningeal hemorrhage. Four occurred in the anterior-inferior-lateral temporal lobe adjacent to the pterion. The remaining three were located in the parietal lobe, frontal lobe, and lateral temporal lobe under the squamosal suture. Decreased diffusion in parenchyma adjacent to the hemorrhage and overlying subcutaneous soft-tissue swelling were apparent in five patients. Susceptibility-weighted imaging showed no additional lesions. MR angiography and MR venography findings were normal. Follow-up MR imaging in one patient demonstrated encephalomalacia. Four patients with short-term clinical follow-up were neurologically normal. CONCLUSIONS Spontaneous superficial parenchymal and leptomeningeal hemorrhage occurs in otherwise healthy term neonates. The hemorrhage is most often in the temporal lobe and in proximity to sutures, accompanied by overlying soft-tissue swelling and adjacent decreased diffusion. This pattern leads us to implicate local trauma with contusion or venous compression or occlusion in the development of these hemorrhages.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007223 Infant A child between 1 and 23 months of age. Infants
D007231 Infant, Newborn An infant during the first 28 days after birth. Neonate,Newborns,Infants, Newborn,Neonates,Newborn,Newborn Infant,Newborn Infants
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D009460 Neurologic Examination Assessment of sensory and motor responses and reflexes that is used to determine impairment of the nervous system. Examination, Neurologic,Neurological Examination,Examination, Neurological,Examinations, Neurologic,Examinations, Neurological,Neurologic Examinations,Neurological Examinations
D010841 Pia Mater The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER. Mater, Pia,Maters, Pia,Pia Maters
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical

Related Publications

Amy H Huang, and Richard L Robertson
May 2001, Neurosurgery,
Amy H Huang, and Richard L Robertson
January 1993, Srpski arhiv za celokupno lekarstvo,
Amy H Huang, and Richard L Robertson
November 2019, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
Amy H Huang, and Richard L Robertson
March 2018, Harefuah,
Amy H Huang, and Richard L Robertson
June 2018, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
Amy H Huang, and Richard L Robertson
June 1987, Indian pediatrics,
Amy H Huang, and Richard L Robertson
June 1982, Developmental medicine and child neurology,
Amy H Huang, and Richard L Robertson
December 1986, Rinsho hoshasen. Clinical radiography,
Amy H Huang, and Richard L Robertson
February 2001, Harefuah,
Copied contents to your clipboard!